Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Kalanchoë (CO2 fixation, rhythm)  (2)
  • CAM-epiphyte  (1)
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Planta 188 (1992), S. 28-38 
    ISSN: 1432-2048
    Keywords: Beat oscillator ; Chaos ; Crassulacean acid metabolism ; Endogenous rhythm ; Kalanchoë (CO2 fixation, rhythm) ; Simulation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Endogenous free-running regular circadian oscillations of net CO2 exchange in the crassulacean-acidmetabolism (CAM) plantKalanchoë daigremontiana Hamet et Perrier de la Bâthie under constant external conditions in continuous light have been shown to change to irregular non-predictable (chaotic) time behaviour as irradiance or temperature are raised above a critical level. A model of CAM has been constructed with pools of major metabolites of varying concentrations, flows of metabolites leading to exchange between pools, metabolite transformations determined by chemical reactions, and feedback regulations. The model is described by a system of coupled non-linear differential equations. It shows stable rhythmicity in normal dark-light cycles and in continuous light and, like theK. daigremontiana leaves in the experiments, a change to chaos as irradiance is increased. The maintenance of endogenous oscillations in the model is brought about by a hysteresis switch or beat oscillator between two stable oscillation modes. In CAM these stable modes are vacuolar malate accumulation and remobilization. The model shows that the physical nature of the beat oscillator in the leaves can be explained by the balance between active and passive transport at the tonoplast.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-1939
    Keywords: CAM-epiphyte ; Light acclimation ; Photoinhibition ; Growth
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Kalanchoë uniflora was grown in the glasshouse with and without shading. Chlorophyll content, area/FW ratio and specific leaf area were higher in leaves of shaded as compared to unshaded plants. Light saturation curves and continuous gas exchange measurements showed that the apparent quantum yield and the light-saturated photosynthetic rate were higher in shaded plants. Shaded plants had lower “mesophyll resistances” than unshaded plants, indicating that the different photosynthetic capacities reflected different contents of ribulose biphosphate carboxylase-oxygenase. Highlight treatment of plants grown in the shade resulted in a decreased photosynthetic efficiency, showing that these plants were sensitive to photoinhibition. However, dry matter production was higher in unshaded than in shaded plants. Obviously the difference in irradiance between the two growth regimes did more than offset the differences in photosynthetic efficiency. Applying additional nutrients did not alter the effects of high PFDs. The results are discussed in respect to photosynthetic performence and plant distribution in the epiphytic habitat.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Planta 188 (1992), S. 28-38 
    ISSN: 1432-2048
    Keywords: Beat oscillator ; Chaos ; Crassulacean acid metabolism ; Endogenous rhythm ; Kalanchoë (CO2 fixation, rhythm) ; Simulation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Endogenous free-running regular circadian oscillations of net CO2 exchange in the crassulacean-acidmetabolism (CAM) plant Kalanchoë daigremontiana Hamet et Perrier de la Bâthie under constant external conditions in continuous light have been shown to change to irregular non-predictable (chaotic) time behaviour as irradiance or temperature are raised above a critical level. A model of CAM has been constructed with pools of major metabolites of varying concentrations, flows of metabolites leading to exchange between pools, metabolite transformations determined by chemical reactions, and feedback regulations. The model is described by a system of coupled non-linear differential equations. It shows stable rhythmicity in normal dark-light cycles and in continuous light and, like the K. daigremontiana leaves in the experiments, a change to chaos as irradiance is increased. The maintenance of endogenous oscillations in the model is brought about by a hysteresis switch or beat oscillator between two stable oscillation modes. In CAM these stable modes are vacuolar malate accumulation and remobilization. The model shows that the physical nature of the beat oscillator in the leaves can be explained by the balance between active and passive transport at the tonoplast.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...