Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1435-1536
    Keywords: CMC ; counterionbinding ; CTAB ; SDS ; bile salt ; Na-cholate ; urea ; mixedmicelles
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract Micellization characteristics and counterion binding properties of cetyltrimethyl ammonium bromide (CTAB) in presence of urea and a nonionic surfactant polyoxyethylene sorbitan monolaurate (PSML), and of sodium dodecyl sulphate (SDS) in presence of urea as well as of several mixtures of CTAB with a bile salt, sodium cholate (NaC), and sodium chloride have been studied. Both urea and PSML have increased the critical micelle concentration (CMC) of the surfactants, the former being more effective than the latter. The analysis of the results supports the pseudophase micellar model to hold over the mass action model. Pure CTAB micelles bind more counterions (96 %) than pure SDS micelles (87 %), and the decreasing effect of urea on the binding is less in case of the former than the latter. A 4∶1 mixture of CTAB and sodium cholate (NaC) can micellize and the micelles bind 87 % bromide ion, whereas 2∶1 and 1∶1 mixtures do not micellize. Micelles of 1∶1 mixture of CTAB and NaCl can bind counter bromide ions to the extent of 92 %. The limiting concentrations of urea required to effect counterion binding by CTAB and SDS micelles are 0.15 mol dm−3 and 0.25 mol dm−3, respectively. Such effect is shown by PSML on CTAB at a ratio 0.28∶1. The activation energy of conduction of SDS has increased in the presence of urea up to a concentration of 4 mol dm−3, at higher concentrations the activation energy has decreased, the effect being more for surfactant concentration above CMC than below.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1435-1536
    Keywords: Bile salts ; CTAB ; SDS ; nitrobenzene ; liquid membrane ; CMC
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract Ion-pairs or coacervates (formed by the reaction between cationic and anionic surfactants) dissolved in nitrobenzene can behave as surfactant-ion registering devices to respond to both surfactant cation and anion. The complexes of cetyltrimethyl ammonium bromide with sodium dodecyl sulfate, sodium salts of deoxycholic and chenodeoxycholic acids, and Aerosol Orange T have been used in nitrobenzene to generate such useful liquid membranes. The complex of dimethyldioctadecyl ammonium bromide and sodium cholate has been used to study the cholate ion behaviour since its complex with cetyltrimethyl ammonium bromide is water soluble. The electrochemical behaviours of the liquid membranes have been found to be fairly good and reproducible. The membrane potential measurements have been used to determine the critical micelle concentrations of the surfactants in pure as well as in mixed states to evaluate surfactant—surfactant interaction in the micelles of the latter.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...