Library

Language
Preferred search index
Number of Hits per Page
Default Sort Criterion
Default Sort Ordering
Size of Search History
Default Email Address
Default Export Format
Default Export Encoding
Facet list arrangement
Maximum number of values per filter
Auto Completion
Feed Format
Maximum Number of Items per Feed
feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Pflügers Archiv 416 (1990), S. 207-209 
    ISSN: 1432-2013
    Keywords: Isolated cardiocytes ; Anoxia ; AP shortening ; K current ; Ca current
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Whole cell currents were measured in isolated cardiocytes of guinea pig under anoxic conditions (pO2 〈0.5 torr). After 2 to 32 (mean 11.2) minutes of anoxia, time independent outward currents developed gradually which had a linear current-voltage relation between -100 and +20 mV and reversed at the resting potential of the cells (-82 to -90 mV). After 20 to 170 (mean 38) seconds, the amplitude of these outward currents saturated (3.6±0.5 nA at +10 mV, n=23). Reoxygenation within one minute after the appearance of the first extra outward currents led in most cells (〉90%) to their complete disappearance in 2 to 4 (mean 2.87, n=15) seconds. Ca currents were not affected at the time when the first extra outward currents occurred. It is concluded that (i) the anoxia-induced outward current is carried by K+ ions probably through KATP channels which open at intracellular ATP concentrations below 1 mmol/l (Noma and Shibasaki 1985) and (ii) this degree of ATP depletion does not affect normal Ca channel function.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Pflügers Archiv 418 (1991), S. 238-247 
    ISSN: 1432-2013
    Keywords: Isolated cardiocytes ; Whole cell recording ; Reoxygenation ; Increased net current ; Transient inward current ; Ca current
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Single myocytes were isolated from ventricles of adult guinea-pig hearts. The patch-clamp technique in the whole-cell configuration was used to study ionic currents. Experiments were performed in an experimental chamber that allowed the cells to be exposed to a sufficiently low O2 pressure to cause metabolic inhibition after 4–35 min (mean 14.1 min, n=20), which was indicated by the appearance of a large time-independent K current. Reoxygenation about 1 min after the first extra outward current was observed caused this current to vanish completely within 2–6 s if the calcium inside the pipette was buffered to negligible values with 20 mmol/l EGTA. With only 10 μM EGTA in the pipette, reoxygenation was followed by an arrhythmogenic period of 10–150 s duration, which was dominated by three types of event: (a) transient inward currents (I ti) developed during the first 5–10 s (26 cells); (b) the net current was increased by a factor of 1.9±0.4 (mean±SD, n=17) yielding a reversal potential for the increased component of −77±4 mV (mean±SD, n=4); and (c) the Ca current decreased by 20%–100% within the first 5–10 s. At the end of the arrhythmogenic period, I ti vanished, the net current recovered completely, and the Ca current recovered partially. At −45 mV, increasing preceding depolarization enlarged the amplitude of both the I ti and the net current, Iti being about four times more increased than the net current. The suppression of the Ca current was independent of the phase of the preceding I ti. We conclude that in isolated cardiocytes, after the induction of an anoxia-induced K current, reoxygenation causes a period of up to 150 s of cytosolic Ca overload, during which I ti is triggered, the net current is enhanced, and the Ca current is suppressed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...