Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Cellular and molecular life sciences 41 (1985), S. 887-894 
    ISSN: 1420-9071
    Keywords: smooth muscle ; K channels ; patch clamp
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary Dispersal of the constituent cells of mammalian visceral and vascular smooth muscles has permitted recordings both of membrane currents under whole-cell voltage clamp, and of currents through single ionic channels using the patch-clamp technique. A rectangular depolarizing step applied to a single cell under voltage clamp yielded a net inward current followed by a net outward current in normal physiological solution. In isolated, ‘inside-out’ patches of cell membrane a calcium- and potential-sensitive K channel (100 pS conductance) and a calcium-insensitive, potential-sensitive K+ channel (50 pS conductance) with slow kinetics have so far been identified and characterized.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-2013
    Keywords: Smooth Muscle ; Slow Waves ; Carbachol ; Role of Ions
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The membrane potential of the cells of the longitudinal muscle of the guinea-pig ileum was recorded intracellularly with glass microelectrodes. Upon changing from isotonic physiological salt solution to sucrose hypertonic solution the spontaneous electrical activity of the membrane was abolished. Spike discharge, but not slow potential changes, was evoked by depolarizing current. In isotonic or in sucrose hypertonic solution, carbachol or acetylcholine caused spike discharge and produced oscillations of the membrane potential (slow waves) which, in hypertonic solution, were about 20 mV in size and 3 sec in duration. The effects on the response to carbachol of varying the ionic composition were examined in sucrose-hypertonic solution. Slow waves in response to carbachol were rapidly and reversibly abolished in sodium-deficient solution, though electrical stimulation evoked spikes for considerable periods. Slow waves were abolished also in sodium-free solution. In contrast, carbachol evoked slow waves after 20 min in calcium-free solution (in which the membrane depolarized) if the membrane was electrically repolarized. In chloride-deficient solution a small but significant (p〈0.05) increase occurred in the duration of slow waves evoked by carbachol. Carbachol elicited slow waves in potassium-free or in potassium-rich solution. The increases in slow wave size and duration in potassium-free solution fell short of statistical significance (0.1〉p〉0.05). The depolarization produced by carbachol was significantly (p〈0.05) less in sodium-deficient (15 mM) solution but was unaffected by alterations in the external chloride concentrations. In sodium-free solution, carbachol hyperpolarized the membrane. The results support a previous suggestion that the slow waves produced by acetylcholine or carbachol represent an inward sodium current through a slow regenerative ion channel.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-2013
    Keywords: Inositol trisphosphate ; Caged InsP 3 ; Caged ATP ; Heparin ; Calcium current
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract In single cells obtained by enzymic treatment of rabbit small-intestinal smooth muscle, and held under voltage clamp by patch pipette in the whole-cell recording mode, release of inositol trisphosphate (InsP 3) from its caged precursor by flash photolysis caused complete inhibition of the voltage-dependent calcium current. No inhibition was seen in control experiments where the cage (2-nitrosoacetophenone) was released by flash photolysis from caged ATP. The inhibition by InsP 3 of the calcium current was prevented if 10 mM EGTA or 2 mg/ml heparin was included in the pipette solution. Heparin is known to block InsP 3 receptors. These results suggest that release of calcium stores by InsP 3 raises Cai and that calcium ions inhibit the calcium current by acting either directly or otherwise on the internal mouth of the calcium channel.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-2013
    Keywords: Caffeine ; Methylxanthine ; Smooth muscle ; Calcium channel
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract The effect of caffeine on inward current carried by barium ions through voltage-dependent calcium channels has been investigated in single rabbit ear artery cells using whole-cell voltage-clamp techniques. Caffeine (1 –30 mM) caused a rapid and reversible concentration-dependent blockade of barium current and a related compound, 3-isobutyl-1-methylxanthine (IBMX), was a more potent inhibitor of barium current. Caffeine-induced inhibition of barium current showed no voltage- or usedependence and caffeine did not alter the steady-state inactivation of barium current. The effect of caffeine was not blocked by extracellular or by intracellular ryanodine or inclusion of both 5 mM 1,2-bis(2-aminophenoxy)-ethane N,N,N′,N′,-tetraacetic acid (BAPTA) and 2 mM ethylene glycol-bis(β-amino ethyl ether) N,N,N′,N′,-tetraacetic acid (EGTA) in the intracellular solution. Rolipram and M&B 22984, non-xanthine inhibitors of phosphodiesterase, did not diminish inward barium current. The data indicate that caffeine and IBMX block voltage-operated calcium channels and it is suggested that this is due to a direct interaction of methylxanthines with the calcium channel.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...