Library

Language
Preferred search index
Number of Hits per Page
Default Sort Criterion
Default Sort Ordering
Size of Search History
Default Email Address
Default Export Format
Default Export Encoding
Facet list arrangement
Maximum number of values per filter
Auto Completion
Feed Format
Maximum Number of Items per Feed
feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Cellular and molecular life sciences 41 (1985), S. 887-894 
    ISSN: 1420-9071
    Keywords: smooth muscle ; K channels ; patch clamp
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary Dispersal of the constituent cells of mammalian visceral and vascular smooth muscles has permitted recordings both of membrane currents under whole-cell voltage clamp, and of currents through single ionic channels using the patch-clamp technique. A rectangular depolarizing step applied to a single cell under voltage clamp yielded a net inward current followed by a net outward current in normal physiological solution. In isolated, ‘inside-out’ patches of cell membrane a calcium- and potential-sensitive K channel (100 pS conductance) and a calcium-insensitive, potential-sensitive K+ channel (50 pS conductance) with slow kinetics have so far been identified and characterized.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-2013
    Keywords: Inositol trisphosphate ; Caged InsP 3 ; Caged ATP ; Heparin ; Calcium current
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract In single cells obtained by enzymic treatment of rabbit small-intestinal smooth muscle, and held under voltage clamp by patch pipette in the whole-cell recording mode, release of inositol trisphosphate (InsP 3) from its caged precursor by flash photolysis caused complete inhibition of the voltage-dependent calcium current. No inhibition was seen in control experiments where the cage (2-nitrosoacetophenone) was released by flash photolysis from caged ATP. The inhibition by InsP 3 of the calcium current was prevented if 10 mM EGTA or 2 mg/ml heparin was included in the pipette solution. Heparin is known to block InsP 3 receptors. These results suggest that release of calcium stores by InsP 3 raises Cai and that calcium ions inhibit the calcium current by acting either directly or otherwise on the internal mouth of the calcium channel.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-2013
    Keywords: Caffeine ; Methylxanthine ; Smooth muscle ; Calcium channel
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract The effect of caffeine on inward current carried by barium ions through voltage-dependent calcium channels has been investigated in single rabbit ear artery cells using whole-cell voltage-clamp techniques. Caffeine (1 –30 mM) caused a rapid and reversible concentration-dependent blockade of barium current and a related compound, 3-isobutyl-1-methylxanthine (IBMX), was a more potent inhibitor of barium current. Caffeine-induced inhibition of barium current showed no voltage- or usedependence and caffeine did not alter the steady-state inactivation of barium current. The effect of caffeine was not blocked by extracellular or by intracellular ryanodine or inclusion of both 5 mM 1,2-bis(2-aminophenoxy)-ethane N,N,N′,N′,-tetraacetic acid (BAPTA) and 2 mM ethylene glycol-bis(β-amino ethyl ether) N,N,N′,N′,-tetraacetic acid (EGTA) in the intracellular solution. Rolipram and M&B 22984, non-xanthine inhibitors of phosphodiesterase, did not diminish inward barium current. The data indicate that caffeine and IBMX block voltage-operated calcium channels and it is suggested that this is due to a direct interaction of methylxanthines with the calcium channel.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...