Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Oecologia 107 (1996), S. 421-425 
    ISSN: 1432-1939
    Keywords: Canopy ; Carbohydrates ; Stomata ; Water relations ; Photosynthesis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The effects of atmospheric CO2 enrichment on mature trees in their natural environment are largely unknown. Here we present a new, and inexpensive technique which can be used in situ to address some key physiological questions related to the CO2 problem. Small, light-weight cups mounted on the lower side of rigid leaves at the top of tall tropical forest trees were supplied with CO2-enriched air derived from a low-technology air mixing device utilizing forest floor CO2 evolution. We present the scientific rationale for such field experiments, technical details, an assessment of potential cup artifacts and first results illustrating effects of elevated CO2 on stomata and carbohydrate accumulation in the canopies of mature trees.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Oecologia 99 (1994), S. 343-351 
    ISSN: 1432-1939
    Keywords: Carbohydrates ; Global change ; Natural CO2 springs ; Leaf nitrogen ; Photosynthesis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract We investigated the carbon supply status in species-rich mediterranean plant communities growing in a bowl-shaped 1-ha “CO2 spring” area near Sienna, Italy. A geothermic “lime-kiln” has provided these communities, for as long as historical records are available, with pure CO2 that mixes with ambient air at canopy level to daytime means of 500–1000 ppm CO2. Immediately outside the spring area similar plant communities are growing on similar substrate, and in the same climate, but under ca. 355 ppm CO2. We found no evidence that plants in the CO2 spring area grow faster, flower earlier or become larger. However, we found very large differences in tissue quality among the 40 species studied inside and outside the spring area. Depending on weather conditions, the mean concentration of total non-structural carbohydrates (TNC, sugars and starch) in leaves of herbaceous plants was 38–47% higher in the spring area. Fast growing ruderals growing on garden soil inside and outside the spring area show the same response. Among trees, leaves of the deciduousQuercus pubscens contain twice as much TNC inside as outside the vent area, whereas evergreenQ. ilex leaves show no significant difference. TNC levels in branch wood paralleled leaf values. TNC in shade leaves was also higher. Elevated CO2 had no effect on the sugar fraction, therefore differences in TNC are due to starch accumulation. Leaf nitrogen concentration decreases under elevated CO2. These observations suggest that the commonly reported TNC accumulation and N depletion in leaves growing under elevated CO2 are not restricted to the artificial conditions of short-term CO2 enrichment experiments but persist over very long periods. Such an alteration of tissue composition can be expected to occur in other plant communities also if atmospheric CO2 levels continue to rise. Effects on food webs and nutrient cycling are likely.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...