Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1476-5535
    Keywords: Bacterial growth retardation ; Suppression of the activity of water ; Protein hydration ; Deuterium NMR relaxation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Summary Food microbiologists have long known that suppression of the activity of water,a w, can retard microbial growth in food systems. Traditionally,a w, suppression has been achieved by addition of salts or humectants to foods. To limit the amount of preservatives added to food products, studies were initiated to assess the feasibility of using proteins to suppressa w to a practical value for retarding bacterial growth and to determine the optimum environmental condition for maximizing this effect for milk proteins. New expressions were developed relating observed longitudinal and transverse NMR relaxation rates, in the absence of cross-relaxation, to protein hydration $$\bar \upsilon _w $$ , to the protein activity coefficient, γp, and to the correlation time of the bound water, τc. From γp, the second virial coefficient of the protein,B o, can be found. By use of $$\bar \upsilon _w $$ andB o,a w could then be directly evaluated at any protein concentration. Resulting expressions were tested by2H-NMR relaxation measurements made as a function of protein concentration, for: β-lactoglobulin A (the major whey protein) under nonassociating (pH 6.0) and associating (pH 4.65) conditions; and for casein (the major milk protein) in the micellar (with added Ca2+) and submicellar (without Ca2+) forms. Values ofa w calculated from these2H-NMR data show that casein, at all the concentrations and temperatures examined, suppressesa w more than does β-lactoglobulin A because of a largerB o. In turn, micellar casein suppressesa w to a larger extent than does submicellar casein because of a larger $$\bar \upsilon _w $$ . Extrapolation ofa w at 4°C to a concentration ten times that in normal milk yields a value, ofa w of less than 0.95, at whichSalmonella and some strains ofClostridium botulinum no longer grow. These results are in agreement with what is known about storageability of condensed milk. Generalizations regarding the types of proteins and cosolutes to be used for suppressinga w will be discussed. Structural information on these proteins calculated from τc will also be presented.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-4943
    Keywords: Casein structure ; surface probe ; trypsin
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract κ-Casein as purified from bovine milk exhibits a rather unique disulfide bonding pattern as revealed by SDS–PAGE. The disulfide-bonded caseins present range from dimer to octamer and above and preparations contain about 10% monomer. All of these heterogeneous polymers, however, self-associate into nearly spherical particles with an average diameter of 13 nm at pH 8.0, as revealed by negatively stained transmission electron micrographs and dynamic light scattering. The weight-average molecular weight of the aggregates at pH 8.0, as judged by analytical ultracentrifugation, is 648,000. Trypsin digestion at pH 8.0 was used to probe the surface groups of the κ-casein A polymers. The reaction with trypsin was rapid and the peptides liberated were identified by separation with reverse-phase HPLC, amino acid analysis, and protein sequencing. The most rapidly released peptides (t 1/2 〈 30 sec) were from cleavage at Arg 97 and Lys residues 111 and 112. These results suggest a surface orientation for these residues, and the data are in accord with earlier proposed 3D predictive models for κ-casein. It is speculated that Arg 97, together with adjacent His residues (98 and 100) and Lys residues 111 and 112, form two positively charged clusters on the surface of the otherwise negatively charged casein. These clusters bracket the neutral chymosin cleavage site (whose hydrolysis triggers a well-known digestive process) and so these clusters may facilitate docking of the substrate caseins with chymosin.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Biopolymers 22 (1983), S. 2507-2511 
    ISSN: 0006-3525
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...