Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-0568
    Keywords: Ia interneurones ; Dendrites ; Horseradish peroxidase ; Intracellular injection ; Light microscopy ; Cat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Interneurones which mediate disynaptic inhibition from la muscle spindle afferents of the quadriceps nerve to lumbar alpha-motoneurones were stained with intracellular injection of horseradish peroxidase. Seven best stained and most satisfactorily preserved cells were selected for analysis, and the light microscopic morphology of their cell bodies and dendrites were quantitatively investigated in parasagittal sections. The perikarya were located dorsal or dorso-medial to the motoneurones; they had mean diameters of 51 × 27 μm and a mean volume of 35820 μm3. The cells had 3 to 7 dendrites, which were arranged asymmetrically around the parent somata. The dendrites extended mainly in the dorso-ventral direction, in which the mean tip to tip distance for each cell was 1742 μm. The dendrites had few spines and they branched almost only in bifurcations. On the average, each process divided 3.5 times and in each cell they gave rise to 14.9 branching points as well as a total combined length of more than 7000 μm. Primary dendrites had a mean length of 193 μm which was generally shorter than the lengths of the branches of higher order. A more detailed analysis of two cells revealed the mean width of primary dendrites to be 5.6 μm while that of the 5th order processes was 1.5 μm. The mean tapering of individual dendritic branches per unit length was 17%, being somewhat more pronounced for the distally located segments, while at branching points the sum of daughter processes approximately equalled the diameter of the parent process. The surface area and volume of the dendrites constituted 90% and 83% of the total surface area and 46% and 37% of the total volume of the two cells, respectively, excluding the axons. The Ia interneurones differed considerably among themselves with respect to the quantitively investigated parameters. They resembled the inhibitory Renshaw cells of the cat with regard to the number of dendrites, the poverty of spines, and the relationships between cell body diameter and width of primary dendrites.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-1106
    Keywords: Locus coeruleus ; Kölliker-Fuse ; Raphe nuclei ; Synaptic transmission ; Spindle afferents ; Cat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The effects of brief trains of electrical stimuli applied within the locus coeruleus and subcoeruleus, the Kölliker-Fuse nucleus and the raphe magnus, obscurus and pallidus nuclei were tested on transmission from group I and group II muscle afferent fibres in mid-lumbar spinal segments of chloralose anaesthetized cats. Changes in the effectiveness of transmission from these afferents were assessed from changes in the size of monosynaptic extracellular field potentials evoked by them. The depression of group II field potentials occurred at conditioning-testing intervals of 20–400 ms, and was maximal at intervals of 40–100 ms and 30–60 ms for potentials recorded in the intermediate zone and dorsal horn, respectively. At intervals up to about 30 ms it was combined with the depression of group I components of the intermediate zone field potentials. However, at longer intervals the conditioning stimuli depressed group II components of these potentials as selectively as monoamines applied ionophoretically at the recording site (Bras et al., 1989a, 1990). Thus, only the late depressive actions are considered as being possibly mediated by impulses in descending noradrenergic and/or serotonergic fibres. No major differences were found in the relative degree of depression of transmission from group II afferents by stimulation of the locus coeruleus/subcoeruleus, Kölliker-Fuse or raphe nuclei, either in the dorsal horn or in the intermediate zone. Since field potentials at these locations are preferentially depressed by ionophoretic application of serotonin and noradrenaline (Bras et al., 1990), and since the locus coeruleus/subcoeruleus, Kölliker-Fuse and raphe nuclei are interconnected, the study leads to the conclusion that both noradrenergic and serotonergic descending pathways can be activated by stimuli applied within either of them. Selective depression of field potentials of group II origin was also evoked by stimulation at other sites, e.g. the periaqueductal grey and medullary reticular formation, when conditioning-testing intervals were sufficiently long. Such a depression is considered to be secondary to activation of neurones of the locus coeruleus/subcoeruleus, Kölliker-Fuse or raphe nuclei and attributed to the spread of current or transsynaptic activation of these neurones, or to stimulation of their axon collaterals outside the nuclei rather than to other descending medullo-spinal systems. The non-selective depression of field potentials evoked by group I and group II afferents at shorter conditioning-testing intervals is proposed to be due to actions of reticulo-spinal pathways.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 105 (1995), S. 25-38 
    ISSN: 1432-1106
    Keywords: Cuneiform nucleus ; Synaptic transmission ; Spindle afferents ; Spinal cord ; Cat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract The effects of short trains of electrical stimuli applied within the cuneiform nucleus and the subcuneiform region were examined on transmission from group I and group II muscle afferents to first-order spinal neurons. Variations in the effectiveness of transmission from these afferents were assessed from changes in the sizes of the monosynaptic component of extracellular field potentials evoked following stimulation of muscle nerves. Field potentials evoked from group II muscle afferents in the dorsal horn of the midlumbar and sacral segments and in the intermediate zone of the midlumbar segments were reduced when the test stimuli applied to peripheral nerves were preceded by conditioning stimulation of the cuneiform nucleus or the subcuneiform region. The depression occurred at conditioning-testing intervals of 20–400 ms, being maximal at intervals of 32–72 ms for dorsal horn potentials and 40–100 ms for intermediate zone potentials. At the shortest intervals, both group II and group I field potentials in the intermediate zone were depressed. Conditioning stimulation of the cuneiform nucleus depressed group II field potentials nearly as effectively as conditioning stimulation of the coerulear or raphe nuclei. We propose that the nonselective depression of transmission from group I and II afferents at short intervals is due to the activation of reticulospinal pathways by cells or fibers stimulated within the cuneiform area. We also propose that the selective depression of transmission from group II afferents at long intervals is mediated at least partly by monoaminergic pathways, in view of the similarity of the effects of conditioning stimulation of the cuneiform nucleus and of the brainstem monoaminergic nuclei and by directly applied monoamines (Bras et al. 1990). In addition, it might be caused by primary afferent depolarization mediated by non-monoaminergic fibers (Riddell et al. 1992).
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 119 (1998), S. 39-46 
    ISSN: 1432-1106
    Keywords: Key words Spinal cord ; Spinocervical tract ; Interneurones ; Cat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract  The possibility of collateral segmental actions of spinocervical tract (SCT) neurones upon interneurones with input from cutaneous and group II muscle afferents was investigated in deeply anaesthetized cats. To this end, intracellular and/or extracellular recordings were made from 35 dorsal horn and 15 intermediate zone interneurones in midlumbar segments of the spinal cord and effects of stimulation of the ipsilateral dorso-lateral funiculus (DLF) at C3 and C1 levels, i.e. below and above the lateral cervical nucleus where axons of SCT cells terminate, were compared. The stimuli applied at the C3 segment were within the range of stimuli (50–100 μA) required for antidromic activation of SCT neurones in the same experiment. Those applied at the C1 segment (200–500 μA) were at least 3 times stronger than C3 stimuli. Under the same experimental conditions, long ascending and descending tract neurones (dorsal spino-cerebellar and rubro-spinal tract neurones) with axons in the DLF were activated at similar thresholds from the C1 and C3 segments. Intracellular recordings were made from 29 interneurnoes of which 19 (65%) were dorsal horn and 10 (35%) were intermediate zone interneurones. Excitatory postsynaptic potentials (EPSPs) evoked by single stimuli applied at the C3 segment, but not the C1 segment, were found in 14 (48%) of those interneurones; their latencies (3.0–5.7 ms) and frequency following with only minimal temporal facilitation were as required for potentials being evoked monosynaptically by the fastest conducting SCT neurones. Extracellular recordings were made from 30 interneurones (24 dorsal horn and 6 intermediate zone interneurones), and in these neurones spike potentials induced from the C3, but not from the C1 segment, were evoked only by short trains of stimuli. However, their latencies from the first effective stimulus (4.3–5.4 ms) were compatible with mono- or oligosynaptically mediated collateral actions of SCT neurones. They were found in 10 (33%) of the 30 investigated interneurones. Similar effects of C3 stimuli were found in similar proportions of dorsal horn interneurones and intermediate zone interneurones. Indications were also found for synaptic actions evoked by C3 stimuli that could not be attributed to direct collateral actions of SCT neurones. In some intracellularly recorded dorsal horn interneurones, short-latency EPSPs were evoked from the C3 segment by the 2nd or 3rd stimulus in the train, but not by single stimuli. In other dorsal horn and intermediate zone interneurones, inhibitory postsynaptic potentials (IPSPs) were evoked from the C3 segment at minimal latencies (2.7–3.2 ms), which might be too short to allow their mediation via SCT neurones. We conclude that SCT neurones might be used to forward information from muscle group II and cutaneous afferents not only to neurones in the lateral cervical nucleus and via them to thalamus and cerebral cortex but also to interneurones in spinal reflex pathways. Thereby reflex actions evoked from group II and cutaneous afferents might be co-ordinated with responses mediated by supraspinal neurones. We conclude also that dorsal horn and intermediate zone mid-lumbar interneurones might contribute to the previously reported di-and poly-synaptic excitation or inhibition of postsynaptic dorsal column (PSDC), spinothalamic tract (STT) and spinomesencephalic tract (SMT) neurones by collateral actions of SCT cells. Thereby these interneurones might contribute to the co-ordination of responses mediated by various populations of supraspinal neurones.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 100 (1994), S. 1-6 
    ISSN: 1432-1106
    Keywords: Spinal cord ; Ascending tracts ; Spinocervical neurons ; Group II muscle afferents ; Cat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Peripheral input to spino-cervical tract (SCT) neurons located in the L4 and L5 segments of the cat spinal cord was investigated using both extracellular and intracellular recording. The main aim was to find out whether midlumbar SCT neurons are excited monosynaptically not only by cutaneous afferents but also by group II muscle afferents, as in the sacral segments but apparently not in the caudal lumbar segments. Input from group II muscle afferents was found in 73% of investigated neurons; the latencies of excitation by group II afferents were compatible with a monosynaptic coupling between these afferents and 62% of neurons. The majority of the midlumbar SCT neurons were excited by group II afferents of the quadriceps and deep peroneal nerves. The predominant monosynaptic input from cutaneous afferents to the same neurons was from the saphenous nerve.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 3 (1967), S. 117-134 
    ISSN: 1432-1106
    Keywords: Supraspinal effects ; Extrapyramidal pathways ; Spinal activity ; Cat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Effects of stimulation of the sensorimotor cortex on activity of the lumbosacral cord were studied in pyramidotomized cats. The following actions initiated by corticofugal volleys were found: 1. postsynaptic effects on motoneurones, mainly excitatory in flexor motoneurones and inhibitory or excitatory in extensor motoneurones, 2. facilitation of spinal reflexes to motoneurones at an interneuronal level, 3. depolarization of presynaptic terminals of group Ib and cutaneous fibres. The latencies of the earliest cortical effects on motoneurones as indicated by modification of monosynaptic reflexes or PSPs were 9–12 msec. Experiments with lesions of different spinal tracts suggest that the effects on motoneurones are mediated mainly by pathways in the ventral part of the lateral funiculus (probably reticulospinal), the facilitation of reflex transmission by pathways in the dorsal part of the lateral funiculus (probably rubrospinal) and primary afferent depolarization by both the former and the latter pathways. The strongest cortical effects were evoked by stimulation of an area around the postcruciate dimple.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 34 (1979), S. 73-89 
    ISSN: 1432-1106
    Keywords: Motor cortex ; Monkey ; Corticospinal projections
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The projection of individual pyramidal tract (PT) neurons from the hindlimb area in the precentral gyrus of the cerebral cortex to the lumbar spinal cord was studied in the monkey by systematically searching for sites within identified regions of the spinal gray from which the PT neurons could be antidromically activated by local stimulation. All investigated neurons belonged to the fast conducting fraction of PT neurons. The following results were obtained. 1. Each PT neuron could be activated from more than one region of the spinal gray matter, including identified spinal motor nuclei and areas dorsomedial to these nuclei, but not the intermediate nucleus or regions dorsal to it. “Passage areas” and “termination areas” were defined. 2. Half of the PT neurons with termination areas within motor nuclei had these areas in more than one nucleus. There were thus strong suggestions for synaptic contacts of some PT neurons with motoneurons of more than one muscle. 3. Four groups of three or four neurons were recorded simultaneously by the same cortical electrode. Comparisons of passage and termination areas within groups revealed both similarities and differences in projections of neighboring neurons. Every neuron was activated from some region(s) where others of the group were not. Common passage areas, or passage and termination areas, for two or three neurons of a group within at least one motor nucleus were found for all groups. Termination areas in the same motor nucleus have been found for the majority of the neurons of only one group. These common projection areas are compatible with, but do not prove, that a group of adjacent PT neurons has common target cells in the spinal cord.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...