Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 35 (1979), S. 495-510 
    ISSN: 1432-1106
    Keywords: Pretectal nuclei ; Superior colliculus ; Visual response pattern ; Retinal input types ; Cat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Single unit recordings from 220 units were obtained from the nuclei praetectalis anterior (NPA) and posterior (NPP) of 30 immobilized, anesthetized cats. Quantitative analysis of pretectal (PT) visual activity was mainly based on recordings from the NPP. For comparison, 160 collicular (CS) neurons were studied. A strong sensitivity for moving objects was evident in both samples. The following main types of PT activity were categorized: (A) slow movement, direction-selective units (21%); (B) slow movement, nondirection-selective units (19%); (C) units nonselective for stimulus velocity and direction (24%); (D) jerk movement selective, nondirection-selective units (36%). Latency measurements following single shocks to optic chiasm (OX) and tract (OT) showed mainly slow conducting fiber input to the PT and CS which can be divided into two different groups by conduction properties and synaptic delay: direct W-input and delayed W-input. Fast Y-fiber input of both types, direct and indirect, was recorded at both sites, PT and CS.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 59 (1985), S. 395-403 
    ISSN: 1432-1106
    Keywords: Nucleus of the optic tract ; Direction-selective retinal ganglion cells ; Optokinetic reflex ; Cat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary We have studied the physiological properties of ganglion cells in the retina of the cat. The experiments were designed to identify those ganglion cells which project to direction-selective cells in the nucleus of the optic tract (NOT), by demonstrating their antidromic activation at low threshold from an electrode in the NOT. These ganglion cells presumably provide the retinal drive to the optokinetic reflex. Altogether, 11 such ganglion cells were identified in a population of 578 cells studied. All 11 were W-cells, with slow-conducting axons. Five of the 11 had on-centre direction-selective receptive fields; the other 6 had a variety of receptive field patterns. Thus, on centre-selective cells form a much higher proportion of the retinal input to direction-selective cells in the NOT than of the overall ganglion cell population. However, their receptive field properties were too varied fully to account for the selectivity of NOT cells for horizontal stimulus movement. In summary the retinal input to the NOT appears to be formed principally or entirely by W-class ganglion cells, including many which are direction selective. It still seems necessary, however, to postulate, some non-retinal mechanism to account for all the receptive field properties of direction-selective NOT cells.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 91 (1992), S. 273-283 
    ISSN: 1432-1106
    Keywords: Pretectum ; Jerk neurons ; Saccades ; Visual stimuli ; Cat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The activity of ‘jerk neurons’ was recorded extracellularly in the pretectum of the awake cat. The characteristic response of jerk neurons was a short, high-frequency burst that occurred after fast movements (‘jerks’) of a large, structured visual stimulus, during saccadic eye movements in the light, and after ‘on’ or ‘off’ visual stimulation. Mean burst latency to pure visual ‘jerks’ was 50 ms, whereas it was 30 ms to saccadic eye movements. Bursts were found to be stereotyped; the highest discharge rate was always at burst onset. Jerk neurons were not selective for stimulus parameters (such as movement amplitude or direction) except that in some neurons a weak correlation between stimulus velocity and discharge frequency was found. During saccades in the dark, clear bursts were only rarely found. In about half of the neurons, however, there was a slight but significant increase in the number of spikes above spontaneous frequency. Visual receptive fields were very large (46° horizontal and 35° vertical extent, on average). Nevertheless, the pretectal jerk neurons showed a rough retinotopic order, which was in accordance with the published retinotopy of the pretectum. Jerk neurons were found throughout the whole superficial pretectum, but preferentially in an area that corresponds to the nucleus of the optic tract (NOT) and the nucleus pretectalis posterior (NPP). Saccades were elicited by electrical stimulations at the sites where jerk neurons were recorded. The direction of the elicited saccades depended strongly on the pretectal stimulation site. A possible role of the jerk neurons as a visuomotor relay to elicit saccades or to modulate perception and attention is discussed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 51 (1983), S. 236-246 
    ISSN: 1432-1106
    Keywords: Nucleus of the optic tract ; Monocular deprivation ; Visual responses ; Optokinetic nystagmus ; Cat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Single cells were recorded extracellularly in the nucleus of the optic tract (NOT) in monocularly deprived cats. Monocular deprivation had no effect on the direction specificity of these neurons, i.e. all cells in the left nucleus preferred movements from right to left and all units in the right nucleus preferred movements from left to right in the visual field. Neurons driven from the deprived eye failed to respond to stimuli moving at velocities above 10°/s whereas neurons driven from the non-deprived eye responded to velocities up to and above 100°/s as do neurons in normal cats. In 8 out of the 10 cats tested all cells in the two nuclei could be influenced only from the contralateral eye irrespective whether this was the deprived or the non-deprived eye. In the other two cats the influence from the non-deprived eye on cells in the ipsilateral NOT was found to be normal. This influence is mediated probably via cortico-fugal projections. In the 8 abnormal cats a clear deprivation effect could be assigned for the first time to the non-deprived eye consisting in a loss of its connections to the ipsilateral NOT. Electrical stimulation of the visual cortex revealed, however, the existence of a connection between the visual cortex and the NOT. A possible explanation for the specific deficit with visual stimulation in the cortico-pretectal synapse ipsilateral to the non-deprived eye is discussed in relation to developmental mechanisms. The conduction velocity of retinal input to the NOT and the output of the NOT to the inferior olive remained uninfluenced by visual deprivation.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 55 (1984), S. 470-482 
    ISSN: 1432-1106
    Keywords: Congenital microstrabismus ; Cat ; Visual cortex ; Binocularity ; Visual axis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Twenty-nine pigmented offspring of an innately esotropic female cat exhibited varying deficits in the number of binocular cells recorded in area 17 of the visual cortex as compared to 12 normal cats. Misalignment of the two eyes in these cats was found in the awake as well as in the paralysed state. Pupillography combined with measurements of visual disparity yielded abnormal esotropia of up to 8.4° under paralysis, which corresponds to an abnormal convergence of the freely moving eyes of up to 14° (average 7.4°). In the majority of animals cortical binocularity was found reduced by the two eyes controlling independent sets of separate units (U-shaped ocular dominance distribution) whereas in 7 cats the reduction was due to a partial loss of one eye's influence. The proportion of monocular units correlated with the degree of crossover of the visual axes (r = 0.73). Anatomical investigation of the retinofugal projections revealed normal appearance in three previously recorded cats in which more than 50% of cortical units had been monocularly driven. The small angles of esotropia and the “normal” appearance of eye position judged by the pupillary positions in the orbit of these cats, might suggest that we found an animal model for microstrabismus.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 61 (1985), S. 117-127 
    ISSN: 1432-1106
    Keywords: Horizontal optokinetic nystagmus ; Nucleus of the optic tract ; Monocular deprivation ; Cat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary 1. Six cats monocularly deprived by eye lid closure within the first week after birth showed the same deficits in the optokinetic reflex (OKR) when tested through the deprived eye as adults irrespective of whether the deprivation period was 6, 24 or 36 months. Closed loop gain (eye velocity/ stimulus velocity) during temporo-nasal stimulus movement was below 0.8 and approached zero at stimulus velocities above 20°/s. Naso-temporal stimulus movement was ineffective in eliciting OKR gain higher than 0.1 at velocities above 10°/s. 2. Different optokinetic deficits were found when the non-deprived eye was tested. In 3 cats OKR gain of the non-deprived eye was reduced with temporally directed stimulus movement when compared to normal whereas the gain of nasal OKR was uneffected. In these cats only monocular cells could be found in the nucleus of the optic tract (NOT), a pretectal cell aggregation involved in the optokinetic reflex pathway. In the other 3 cats the OKR of the non-deprived eye was not different from normal and could be elicited almost equally well in both directions. In these cats binocular cells were found in the NOT ipsilateral to the non-deprived eye. Again duration (6, 24 or 36 months) of monocular deprivation had no influence on this dichotomy. 3. In a cat with asymmetric OKR of the non-deprived eye, the removal of the visual cortex ipsilateral to the non-deprived eye produced a small but significant gain decrease for temporal OKR of the non-deprived eye but no change when the deprived eye was tested. Visual cortex lesion ipsilateral to the deprived eye in the same cat had also no effect on the deprived eye's performance but reduced nasal OKR gain for the non-deprived eye at high velocities. 4. The effects induced by long term monocular deprivation were not reversed after intensively forcing the use of the deprived eye by closing the non-deprived eye. Also enucleation of the deprived eye had no effect on the gain of the non-deprived eye. 5. These optokinetic deficits are discussed in relation to functional changes in the NOT.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1432-1106
    Keywords: Vision ; Lateral geniculate nucleus ; Saccadic eye movements ; Suppression ; Cat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Responses of relay cells in the A-laminae of the dorsal lateral geniculate nucleus (LGNd) during spontaneous saccades and saccade-like visual stimulation were extracellularly recorded in awake cats. Ninety-six out of 137 cells recorded (42 X and 54 Y cells) were responsive during spontaneous saccadic eye movements. All Y cells and 67% of the X cells responded with burst activity, i.e. with either one or two activity peaks during and after saccades. Thirty-three percent of the X cells were inhibited during saccades. Excitatory peaks occurred at mean latencies of 33 ms and 31 ms for X and Y cells, respectively. Comparable burst responses were obtained when retinal image shifts similar to those during saccades were induced by external saccade-like stimulus movements. However, the latencies of excitatory peak activity were significantly longer to external stimuli than to the onsets of saccades. This indicates the existence of an eye movement-related input which activates LGNd relay cells in addition to the visual input. We propose that the pretectogeniculate projection may contribute to the responses of LGNd relay cells following saccadic eye movements via a disinhibitory input and that this input could be involved in intra- and postsaccadic modulations of the transfer of visual signals to visual cortex.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 11 (1970), S. 318-326 
    ISSN: 1432-1106
    Keywords: Movement detectors ; Tectum opticum ; Eye movements ; Retinal image shifts ; Cat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Activity of tectal movement specific neurons was recorded during spontaneous eye movements in total darkness and in presence of stationary visual stimuli. According to their reactions in presence or absence of stationary visual stimuli tectal units can be divided into four categories: 1. Neurons which are silent or discharge independently of eye movements, when the animal stays in total darkness, but which fire in synchrony with eye movements when stationary stimuli are presented. 2. Neurons which remain unaffected when the animal makes eye movements in total darkness or in presence of a stationary pattern. 3. Neurons which fire in synchrony with eye movements in absence and in presence of stationary patterns. In a few of these neurons tested curarization of the animal led to a marked increase of spontaneous activity. 4. Neurons whose spontaneous and stimulus driven discharge is suppressed in synchrony with eye movements when the animal is exposed to total darkness or when it faces stationary patterns
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 42 (1981), S. 146-157 
    ISSN: 1432-1106
    Keywords: Nucleus tractus opticus ; Visual response ; Direction specificity ; Optokinetic nystagmus ; Cat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary All cells in the nucleus of the optic tract (NOT) of the cat, that Bcould be activated antidromically from the inferior olive, were shown to be direction-specific, as influenced by horizontal movements of an extensive visual stimulus. Cells in the left NOT were activated by leftward and inhibited by rightward movement, while those in the right NOT were activated by rightward and inhibited by leftward movement. Vertical movements did not modulate the spontaneous activity of the cells. The mean spontaneous discharge rate in 50 NOT cells was 30 spikes/s. This direction-specific response was maintained over a broad velocity range (〈0.1 ° – 〉100 °/s). Velocities over 200 °/s could inhibit NOT cells regardless of stimulus direction. All cells in the NOT were driven by the contralateral eye, about half of them by the ipsilateral eye also. In addition, activation through the contralateral eye was stronger in most binocular units. Binocular cells preferred the same direction in the visual space through both eyes. An area approximately corresponding to the visual streak in the cat's retina projected most densely onto NOT cells. This included an extensive ipsilateral projection. No clear retinotopic order was seen. The most sensitive zone in the very large receptive fields (most diameters being 〉20 °) was along the horizontal zero meridian of the visual field. The retinal input to NOT cells was mediated by W-fibers. The striking similarities between the input characteristics of NOT-cells and optokinetic nystagmus are discussed. The direction selectivity and ocular dominance of the NOT system as a whole can provide a possible explanation for the directional asymmetry in the cat's optokinetic nystagmus when only one eye is stimulated.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...