Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Catecholamines  (3)
  • Dietary modifications  (1)
Material
Years
Keywords
  • 1
    ISSN: 1432-1254
    Keywords: Exercise ; Cold ; Lactate ; Catecholamines ; Workload
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geography , Physics
    Notes: Abstract This study was designed to clarify the effects of cold air exposure on metabolic and hormonal responses during progressive incremental exercise. Eight healthy males volunteered for the study. Informed consent was obtained from every participant. The following protocol was administered to each subject on three occasions in a climatic chamber in which the temperature was 20°, 0° or −20°C with relative humidity at 60%±1%. Exercise tests were conducted on an electrically braked ergocycle, and consisted of a propressive incremental maximal exercise. Respiratory parameters were continuously monitored by an automated open-circuit sampling system Exercise blood lactate (LA), free fatty acids (FFA), glucose levels, bicarbonate concentration (HCO 3 − ), acidbase balance, plasma epinephrine (E) and norepinephrine (NE) were determined from venous blood samples obtained through an indwelling brachial catheter. Maximal oxygen uptake was significantly different between conditions: 72.0±5.4 ml kg−1 min−1 at 20°C; 68.9±5.1 ml kg−1 min−1 at 0°C and 68.5±4.6 ml kg−1 min−1 at −20°C. Workload, time to exhaustion, glucose levels and rectal Catecholamines and lactate values were not significantly altered by thermal conditions after maximal exercise but the catecholamines were decreased during rest. Bicarbonate, respiratory quotient, lactate and ventilatory thresholds increased significantly at −20°C. The data support the contention that metabolic and hormonal responses following progressive incremental exercise are altered by cold exposure and they indicate a marked decrease in maximal oxygen uptake, time to exhaustion and workload.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1439-6327
    Keywords: Lactate threshold ; Onset on blood lactate accumulation ; Dietary modifications
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary This study was designed to clarify the effects of dietary modifications on the lactate threshold (LT) and on the onset of blood lactate accumulation (OBLA) during progressive incremental exercise. Six healthy males volunteered for the study. Informed consent was obtained from every participant. The following protocol was administered to each subject on three occasions: a 48-h period of mixed dieting (53% carbohydrates, 30% lipids, 17% proteins) preceding the first exercise test, immediately followed by a 48-h period of either a carbohydrate-rich (68% CHO, 23% lipids, 9% proteins) or a fat-rich (19% CHO, 57% lipids, 26% proteins) iso-caloric diet leading to the second exercise and separated from the third test by a 12-days period. Exercise tests were conducted on an electrically-braked ergocycle, and consisted of a progressive incremental maximal exercise. Respiratory parameters were continuously monitored by an automated open circuit sampling system. Exercise blood lactate (LA), free fatty acids (FFA), glucose levels and acid-base balance were determined from venous blood samples obtained through an indwelling brachial catheter. Peak lactate values, workload and performance time were not significantly altered by imposed diets. Furthermore, dietary modifications had no significant effect on LT, OBLA fixed at 4 mmol and ventilatory threshold. Increased pH and FFA mobilization were observed with fat-rich diet, while CHO-rich diet markedly increased the respiratory exchange ratio (R). It is concluded that LT and OBLA are not significantly altered by fat or CHO enrichment of diets.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1439-6327
    Keywords: Supramaximal exercise ; Diet ; Blood glucose ; Insulin ; Catecholamines
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The effects of supramaximal exercise on blood glucose, insulin, and catecholamine responses were examined in 7 healthy male physical education students (mean±SD: age=21±1.2 years; $$\dot V_{{\text{O}}_{{\text{2 max}}} } $$ =54±6 ml · kg−1 · min−1) in response to the following three dietary conditions: 1) a normal mixed diet (N); 2) a 24-h low carbohydrate (CHO) diet intended to reduce liver glycogen content (D1); and 3) a 24-h low CHO diet preceded by a leg muscle CHO overloading protocol intended to reduce hepatic glycogen content with increased muscle glycogen store (D2). Exercise was performed on a bicycle ergometer at an exercise intensity of 130% $$\dot V_{{\text{O}}_{{\text{2 max}}} } $$ for 90 s. Irrespective of the dietary manipulation, supramaximal exercise was associated with a similar significant (p〈0.01) increase in the exercise and recovery plasma glucose values. The increase in blood glucose levels was accompanied by a similar increase in insulin concentrations in all three groups despite lower resting insulin levels in conditions D1 and D2. Lactate concentrations were higher during the early phase of the recovery period in the D2 as compared to the N condition. At cessation of exercise, epinephrine and norepinephrine were greatly elevated in all three conditions. These results indicate that the increase in plasma glucose and insulin associated with very high intensity exercise, persists in spite of dietary manipulations intended to reduce liver glycogen content or increase muscle glycogen store. These data suggest that the blood glucose increase following supramaximal exercise is most likely related to hepatic glycogenolysis in spite of a substantial decrease in liver glycogen content.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1439-6327
    Keywords: Prolactin ; Temperature ; Face cooling ; Exertion ; Catecholamines ; Endorphins
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary This study was designed to verify if the decrease in blood prolactin (PRL) induced by selective face cooling during exercise could be part of a response to specific body thermal stress. Five healthy trained male cyclists presenting a significant plasma PRL elevation to exercise were, on three occasions and at weekly interval, submitted to a submaximal exercise (approx. 65% $$\dot V_{o_{2max} } v$$ ) on ergocycle with and without selective face cooling. In absence of face cooling a first trial served to establish reference values for workload, heart rate and plasma PRL levels, the latter increasing markedly (450% of resting values) in these conditions. On a second trial but with workload maintained at reference values (222±9 W), a significant bradycardia was observed with face cooling; furthermore, plasma PRL response to exercise was significantly reduced (to 31% of original response). On a third trial with face cooling, workload had to be significantly augmented (242±10 W) to maintain heart rate at reference level (78%HR max); in addition, plasma PRL response to exercise was almost unchanged compared to the reference-value level. The absence of a significant face cooling-induced decrease in sympathetic tonus, as evaluated through peripheral plasma catecholamines response, does not indicate a role for the autonomic nervous system in the face cooling-induced reduction of both heart rate and PRL responses during exercise. Assay of circulating peripheral beta-endorphins could indicate that the face cooling-induced PRL blunted response does not necessarily involve an opioid mediation. It was concluded that decreased plasma PRL levels could be associated to bradycardia, hyposudation and peripheral vaso-constriction to constitute an integrated response to face cooling during thermal stress.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...