Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Deiters neurones  (6)
  • Inhibition  (4)
  • Cats  (3)
  • Electron microscopy  (3)
  • 1
    ISSN: 1432-1106
    Keywords: Purkinje cells ; Deiters neurones ; Inhibitory synapses ; GABA
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary 1.Various drugs were applied intravenously or into the fourth ventricle and their effects upon the inhibition exerted by Purkinje cell axons were appraised by both extra- and intracellular recording from Deiters neurones. Strychnine, picrotoxin, pentamethylenetetrazol, β-methyl-β-ethylglutarimide, noradrenaline, dopamine, dibenamine and nethalide did not affect this inhibition. 2.γ-aminobutyric acid (GABA) and inhibitors of GABA transaminase were applied iontophoretically into the vicinity of Deiters neurones through an outer barrel of coaxial electrodes, the effects being observed either intra- or extracellularly through an inner barrel. 3. GABA depressed both inhibitory and excitatory postsynaptic potentials and often blocked the spike potentials, while it increased the membrane conductance. 4. GABA also produced a membrane hyperpolarization of 3–8 mV. Concomitantly both the spike potential and after-depolarization increased in amplitude and the after-hyperpolarization decreased. 5. In a few cases hydroxylamine but not amino-oxyacetic acid potentiated the inhibition, there being an increase in the inhibitory postsynaptic potentials thereby induced. 6. These effects were considered in connection with the possibility that GABA acts as a natural transmitter.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Archives of dermatological research 282 (1990), S. 402-407 
    ISSN: 1432-069X
    Keywords: Electron microscopy ; Culture ; Hair cells ; Growth ; Differentiation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The cultured hair cells from 4-day-old C3H mice were studied by electron microscopy. The hair roots isolated from the skin by collagenase digestion were dispersed into a cell suspension by treatment with a mixture of trypsin and ethylenediaminetetraacetate. The cells were cultured in MCDB-153 (a medium containing seven growth factors) for 1, 3, 6 or 13 days. The number of cultured cells on day 3 was twice that on day 1, and stayed at the same level until day 13. By electron microscopy, some of the cells cultured for 1 day were seen to be undifferentiated and others already showed differentiation into various hair structures. Such differentiated cells disappeared on day 3 and most of the cells cultured for 3 days were undifferentiated. Cells cultured for 6 days were differentiated showing inner root sheath cell, hair cortical cell and medulla cell structures. The characteristics of these cultured cells corresponded well to those of in vivo cells of the hair tissues from the back skin of 7-day-old C3H mice. On day 13 degeneration occurred in the cultured cells. In none of these cultures were mesenchymal cells, such as fibroblasts, found. The present electron microscopic study reveals that immature cells obtained from mouse hair tissues proliferate in vitro and differentiate into several subpopulations corresponding to those of in vivo cell layers of hair tissues. The present culture technique may be useful for studies of hair cell growth and differentiation.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Archives of dermatological research 284 (1992), S. 290-296 
    ISSN: 1432-069X
    Keywords: Cepharanthine ; Minoxidil ; Culture ; Hair cells ; Electron microscopy
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The effects of cepharanthine and minoxidil on proliferation, differentiation and keratinization of cultured cells from the murine hair apparatus were examined electron microscopically. Both cepharanthine and minoxidil stimulated cell proliferation and delayed initiation of differentiation and keratinization of the cultured cells. On day 6, most control cells (87%) cultured in a 0.03 mM calcium medium without cepharanthine and minoxidil were differentiated into several subpopulations corresponding to those of in vivo cell layers of the hair apparatus, while most of the cells cultured with cepharanthine (71%) or minoxidil (70%) were still immature. On day 13, the number of degenerated cells increased (63%) in the control culture, whereas in the culture treated with cepharanthine or minoxidil, cell degeneration scarcely occurred (5% and 8%, respectively). Differentiated cells having tonofilaments were often observed in the cepharanthine- and minoxidil-treated cultures (76% and 72%, respectively). Elevation of extracellular calcium up to 1.0 mM induced keratinization (34%) in the control culture on day 6, while no keratinized cells were observed in the cepharanthine- or minoxidil-treated culture. On day 13 keratinization similarly occurred in the cultures with cepharanthine (30%) or minoxidil (48%). These results show that both cepharanthine and minoxidil may directly influence proliferation, differentiation and keratinization of cultured cells from the hair apparatus.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Archives of dermatological research 281 (1989), S. 254-259 
    ISSN: 1432-069X
    Keywords: Innermost cell layer ; Tonofilaments ; Huxley's cells ; Henle's cells ; Anagen hair follicles ; Electron microscopy
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary To elucidate the biologic roles and further cytologic characteristics of the innermost cell (IMC) layer of the outer root sheath (ORS), human anagen hair follicles were ultrastructurally examined. In the lower follicle, the transeversely running tonofilaments in the inner side of the cytoplasm of the IMCs showed a massive accumulation, facing the keratinized part of a Huxley's cell protruding through a Henle's pore. In a rare instance, a spindle-shaped cell was seen between the IMC layer and the keratinized Henle's layer. At the lower isthmus portion, some of the IMCs containing a large number of tonofilaments showed a partial degeneration of the inner side of the cytoplasm. More distally, intercellular spaces between the keratinized IMCs and keratinized Henle's cells were partly dilated and contained amorphous substances. It is suggested that the IMCs in the lower follicle may play a role to support and cover the inner hair structures, tightly as hoops of a barrel. In the isthmus portion, the IMCs may loosely support and guide the keratinized Henle's cells undergoing degeneration.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 6 (1968), S. 247-264 
    ISSN: 1432-1106
    Keywords: Deiters neurones ; Disinhibition ; Cerebellum ; Cats
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Following the stimulation of cerebellar cortex, a slow depolarization developed in the neurones which were impaled with microelectrodes in the dorsal portion of the nucleus of Deiters. Characteristically, it was produced bilaterally from a wide area of the culmen and, with double shock stimulation at brief intervals, showed a marked potentiation, often in association with a later depression. After repetitive stimulation of the cerebellar cortex the slow depolarization was prolonged for a period of many seconds. Even stimulation of the spinal cord caused similar depolarization. By intracellular injection of currents and ions, the depolarization was shown to be disinhibition, i. e., removal of background inhibition. Accordingly, it was confirmed that there was a steady production of IPSPs in dorsal Deiters neurones, which diminished during the phase of disinhibition. As the possible source of these background IPSPs, the Purkinje cell axons within the nucleus of Deiters were found to be discharging rhythmically at a rate of 20–90/sec, and in fact they were depressed very effectively after cerebellar stimulation. At the same time, volleys along Purkinje cell axons produced by a testing cerebellar stimulation also were diminished, indicating a depression in the excitability of Purkinje cells.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1432-1106
    Keywords: Deiters neurones ; Inhibition ; Climbing fibre responses ; Inferior olive
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Intracellular recording with microelectrodes has been employed to reveal the causal relationship between the trans-synaptic activation of cerebellar Purkinje cells and the postsynaptic inhibition of Deiters neurones. Cerebellar stimulation produced in Deiters neurones not only monosynaptic IPSPs with latency of 0.9–1.5 msec, but also the delayed IPSPs at 1.5–9 msec. Correspondng to the latter, Purkinje cells were found to be activated orthodromically with the characteristic climbing fibre responses (CFRs), the latency varying from 0.8 up to 10 msec. On the other hand, stimulation of the inferior olive first induced EPSPs in Deiters neurones, presumably monosynaptically, then with a short delay of less than a millisecond CRFs in Purkinje cells of the anterior lobe, which in turn were succeeded by IPSPs in Deiters neurones after a further delay of a millisecond. Spinal stimulation activated the inferior olive trans-synaptically and thereby produced CFRs in Purkinje cells and a sequence of EPSPs and IPSPs in Deiters neurones. Close correlation between these spinal-induced events in both neurone species was further indicated by the concurrence of their fluctuations in intensity, these fluctuations being characteristic of the spino-olivary transmission mechanism. These results strongly support the postulate that the cerebellar Purkinje cells are inhibitory in their action upon Deiters neurones.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 4 (1968), S. 310-320 
    ISSN: 1432-1106
    Keywords: Deiters neurones ; Cerebellum ; Inhibitory zone ; Cats
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary By recording intracellularly from Deiters neurones of cats, there was a survey of those cerebellar areas that, when stimulated, produced inhibitory postsynaptic potentials (IPSPs) monosynaptically in Deiters neurones. The monosynaptic inhibitory area expanded longitudinally mainly along the ipsilateral vermal cortex of the anterior lobe. The ipsilateral cortex of the posterior lobe was also effective in inhibiting Deiters neurones though less prominently than the anterior lobe. The inhibitory fibers could be stimulated in the white matter of the cerebellum, predominantly in the ipsilateral side at rostral regions of nuclei fastigii and interpositus. It was further shown that the monosynaptic inhibition from the anterior and posterior lobes occurs chiefly in the dorsal portion of Deiters nucleus. Since in both the cerebellum and Deiters nucleus the spatial pattern of distribution of the inhibitory fibers conforms to that of the corticovestibular fibers as histologically defined, the experimental findings are in accord with the hypothesis that the cerebellar Purkinje cells are inhibitory in nature.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 26 (1976), S. 89-103 
    ISSN: 1432-1106
    Keywords: Vestibular ; Oculomotor ; Canal ; Inhibition ; Rabbit
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary In anesthetized albino rabbits, electric pulse stimulation was applied to ampullary branches of the vestibular nerve. Reflex discharges evoked from a canal in an extraocular muscle were depressed very effectively by conditioning stimulation at a certain other canal. The present systematic survey revealed that this reflex depression occurred specifically in 3 combinations of conditioning and testing canals; 1. anterior and posterior canals of the same side; 2. anterior and posterior canals of the opposite sides; and 3. horizontal canals of the two sides. Occurrence of postsynaptic inhibition in oculomotor neurons, on the other hand, was indicated by appearance of slow muscle potentials in extraocular muscles. It was confirmed that this motoneuronal inhibition did not contribute to the reflex depression in the above combination (1). Even in combinations (2) and (3), the accompanying motoneuronal inhibition was eliminated by adjusting intensities of canal stimuli or by severing its pathway in the medulla, or it was discriminated from the reflex depression by their different latencies and time courses. Hence, it was concluded that the reflex depression was attributable, at least largely, to non-motoneuronal inhibition, presumably postsynaptic inhibition at relay neurons for vestibulo-ocular reflexes. Slow muscle potentials evoked from a canal were also used as testing responses, but their depression could not be detected after conditioning at other canals.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 10 (1970), S. 64-80 
    ISSN: 1432-1106
    Keywords: Intracerebellar nuclei ; Purkinje cells ; Inhibition ; Excitation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary In anaesthetized cats, synaptic events in cerebellar nuclei neurones were investigated with intracellular microelectrode techniques. These cells were identified by their antidromic activation along their axons and/or by their location in histological sections. In the cells of lateral nucleus IPSPs were induced monosynaptically during stimulation of the overlying hemispheral cortex of the cerebellum. In the cells of nuclei interpositus and fastigii, similar IPSPs were produced from the paravermal and vermal cortices, respectively. The postulate that the Purkinje cells exert an inhibitory action upon their target neurones thus applies not only to Deiters neurones, as previously proposed, but also to cells in the cerebellar nuclei. Stimulation of the cerebellar afferents at the inferior olive, the pontine nucleus and the lateral reticular nucleus produced EPSPs in cerebellar nuclei cells with relatively brief latencies, probably through axon collaterals of these afferents. The EPSPs were followed by IPSPs and slow depolarizations of disinhibitory nature, which, as studied previously in Deiters neurones, might be caused respectively by activation and subsequent depression of Purkinje cells through the cerebellar intracortical mechanisms.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 2 (1966), S. 330-349 
    ISSN: 1432-1106
    Keywords: Deiters neurones ; IPSP ; Monosynaptic ; Purkinje cells ; Inhibitory neurones
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary During stimulation of the anterior lobe of the cerebellum, postsynaptic potentials were recorded intracellularly from ipsilateral Deiters neurones of the cat. In the majority of examined cells, the inhibitory postsynapic potentials were induced with short latency; 1.06 msec on the average from lobule III or IV. The latency was longer (1.23 msec) when the lobule V was stimulated, while it was shorter (0.86 msec) from the juxtafastigial region. It follows that the IPSP was produced via a monosynaptic pathway at a conduction velocity of 15 to 20 m/sec. Recording of the extracellular field potentials and focal stimulation within and around Deiters' nucleus further indicated that the inhibitory impulses propagated out of the cerebellum along a remarkable bundle of fibres which terminated within Deiters' nucleus. These results are all explicable by assuming that the cerebellar Purkinje cells are inhibitory in nature and so produce IPSPs monosynaptically in Deiters neurones via the long corticofugal fibres. Monosynaptic EPSPs were also detected in some Deiters neurones. They are considered to be mediated by the other pathways formed of axon collaterals of the cerebellar afferents.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...