Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Archive of applied mechanics 70 (2000), S. 289-306 
    ISSN: 1432-0681
    Keywords: Key words Spectral decomposition ; compliance tensor ; orthotropic medium ; Euler angles ; elastic strain energy ; Poisson's ratios ; quasi-isotropic medium
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Summary The compliance tensor related to orthotropic media is spectrally decomposed and its characteristic values are determined. Further, its idempotent tensors are estimated, giving rise to energy orthogonal states of stress and strain, thus decomposing the elastic potential in discrete elements. It is proven that the essential parameters, required for a complete characterisation of the elastic properties of an orthotropic medium, are the six eigenvalues of the compliance tensor, together with a set of three dimensionless parameters, the eigenangles θ, ϕ and ω. In addition, the intervals of variation of these eigenangles with respect to different values of the elastic constants are presented. Furthermore, bounds on Poisson's ratios are obtained by imposing the thermodynamical constraint on the eigenvalues to be strictly positive, as specified from the positive-definite character of the elastic potential. Finally, the conditions are investigated under which a family of orthotropic media behaves like a transversely isotropic or an isotropic one.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Archive of applied mechanics 68 (1998), S. 281-295 
    ISSN: 1432-0681
    Keywords: Key words Homogenization method ; Poisson's ratios ; fiber composites
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Summary Materials with specific microstructural characteristics and composite structures are able to exhibit negative Poisson's ratio. This fact has been shown to be valid for certain mechanisms, composites with voids and frameworks and has recently been verified for microstructures optimally designed by the homogenization approach. For microstructures composed of beams, it has been postulated that nonconvex shapes (with reentrant corners) are responsible for this effect. In this paper, it is numerically shown that mainly the shape, but also the ratio of shear-to-bending rigidity of the beams do influence the apparent (phenomenological) Poisson's ratio. The same is valid for continua with voids, or for composites with irregular shapes of inclusions, even if the constituents are quite usual materials, provided that their porosity is strongly manifested. Elements of the numerical homogenization theory and first attempts towards an optimal design theory are presented in this paper and applied for a numerical investigation of such types of materials.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Colloid & polymer science 261 (1983), S. 825-833 
    ISSN: 1435-1536
    Keywords: Polymers ; Slow-brittle-fracture ; Toughness ; Caustics
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract A slow crack growth was achieved in initially edge-cracked specimens made of a high-molecular weight PMMA by regulating the cross-head speed of loading by a computer-driven testing machine. The strain rate $$\dot \varepsilon $$ used during the tests varied between $$\dot \varepsilon $$ =1× l0−6 s−1 and 1×10−4 s−1. It was shown that, in this zone of slow quasi-static loading of brittle polymethylmethacrylate specimens under conditions of plane stress, the crack initiated for a critical value of loading, at some characteristic zone of strain-rate variation at the crack tip. It was established that for strain rate between $$\dot \varepsilon $$ =0.18×10−5 s−1 and $$\dot \varepsilon $$ =0.45×10−4 s−1 brittle cracks were propagating always slowly with velocities in the range ofc=3 to 5×10−2 m/s. For values ofv s outside this transition zone fracture was typically brittle with high crack-propagation velocities. As the strain rate was varying beyond the stable low-velocity region, a two-step crack velocity pattern was operative, where the one step took always low values, and the other step corresponded to crack-propagation velocities significantly higher than these limits, tending to typical brittle-fracture velocities of the material. Oscillations of the velocityc at the transition zones, or, in many cases all over the zone of slow propagation of the crack, indicated the unstable character of crack propagation, influenced by different stress raisers and especially by the opposite longitudinal boundary of the specimen. Stress intensity factor values during crack propagation, evaluated from the front (cuspoid) and the rear (external) caustic, which remained alwaysk g-dominant, were following similar trends as the variation of the crack propagation velocity.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...