Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Cell & Developmental Biology  (1)
  • Cyanobacteria  (1)
  • 1
    ISSN: 1432-072X
    Keywords: Ribulose bisphosphate carboxylase ; Quaternary structure ; Molecular weight ; Electron microscopy ; Cyanobacteria ; Synechococcus
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Ribulose bisphosphate (RuP2) carboxylase from the marme cyanobacterium, Synechococcus sp., comprised both large (57,000 dalton) and small (12,000 dalton) subunits. The undissociated, purified enzyme was considerably smaller than the spinach enzyme when compared by pore-gradient electrophoresis, gel filtration and density-gradient centrifugation. This suggested that the cyanobacterial enzyme might have a hexameric (L6S6) subunit structure, unlike the enzymes from spinach and many other organisms which are octamers (L8S8). However, the molecular weight of the Synechococcus enzyme was measured by equilibrium sedimentation and found to be 530,000, which is within the range observed for L8S8-type enzymes. Furthermore, electron microscopic studies of negatively stained preparations of both the native enzyme, and a preparation depleted of 87% of its small subunits by repeated mild-acid precipitation, revealed four-fold symmetry characteristic of an octameric, cubical structure. Synechococcus RuP2 carboxylase therefore must be an L8S8 octamer and its anomalous pore-penetration behaviour may be due to an asymmetric shape. Some support for the latter possibility was provided by electron miscoscopic observations of two different types of images which may be different views of the molecule in two planes.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Cell Motility and the Cytoskeleton 6 (1986), S. 521-533 
    ISSN: 0886-1544
    Keywords: intracellular organelle transport ; microtubules ; microfilaments ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: Reticulomyxa is a large, multinucleated freshwater protozoan with striking intracellular transport. Cyloplasmic streaming and saltatory movements of individual organelles (at rates of up to 25 μm/sec) are observed within the naked cell body and the extensive reticulate peripheral network of fine cytoplasmic strands. As demonstrated by video-enhanced light microscopy, individual organelles move only when associated with cytoskeletal linear elements. The linear elements are composed of mixed colinear bundles of microtubules and actin filaments, which form the backbone of the reticulopodial network. The constant branching, sprouting, and fusion of network stands suggest unique membrane properties and an unusually dynamic cytoskeleton. The electrophoretic mobility of Reticulomyxa tubulins and the lack of crossreactivity with several antibodies known to react with many plant and animal tubulins suggest that they may differ from other tubulins more widely than might be expected. Reticulomyxa's large size, the rapidity and pervasiveness of the two forms of transport, and the simple and ordered cytoskeleton make the organism well suited for future studies on the mechanisms of intracellular transport.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...