Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Journal of Morphology 135 (1971), S. 99-129 
    ISSN: 0362-2525
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: The gross anatomy and histology of the gonads and accessory sex organs are described for male and female Presbytis e. entellus. The langur differs from other catarrhine monkeys in certain specialised characters. The “sexual skin” is not comparable to the true sexual skin of the Cercopithecinae which exhibits cyclical change during the various phases of reproduction; it is nevertheless fully developed in the adult male and serves as one of the secondary sexual characters.Certain aspects of the reproductive system strikingly resemble those of man. The combined testicular weight (0.07% body weight) is similar to the human (0.08%), and the male has ampullary glands. The cervical canal is straight like that of a baboon or man. The corpus luteum (except in the lactating female) is a hollow glandular structure. Extensive hemorrhage which always accompanies ovulation in the langur, does not appear to be a common phenomenon in any other catarrhine for which ovulation and the development of corpus luteum have been studied. The hemorrhagic remains are retained for a long time in the ovulated follicle.The ovary is characteristically large and averages 0.74 gm without corpus luteum and 1.57 gm with corpus luteum, a feature never reported in any other catarrhine monkeys. The pre-ovulatory follicle may attain a size of 14 × 14 mm.
    Additional Material: 2 Tab.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Journal of Morphology 140 (1973), S. 135-151 
    ISSN: 0362-2525
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: Anatomical analysis of the forebrain and midbrain of Anelytropsis, Dibamus and feyliniids reveals structural similarities with those of skinks and snakes. Skinks and feyliniids are probably derived from a common ancestral stock. This is suggested by mutual reduction of several telencephalic nuclei, by similar trends in the development of the dorsal thalamus, and by similarities in the lamination of their optic tecta. Anelytropsis, Dibamus, feyliniids and snakes show interdigitation of the periventricular gray zones of the optic tectum and enlargement of lamina 7 of the posterior colliculus. Of these three taxa, Dibamus is most similar to burrowing snakes and many of its brain characters are intermediate between skinks and burrowing snakes. These similarities may suggest common ancestry between Dibamus and snakes rather than parallelism.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Journal of Morphology 160 (1979), S. 103-119 
    ISSN: 0362-2525
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: Classical light microscopic studies on pigmentation of Fundulus heteroclitus (killifish) indicated that there are three groups of light reflecting cells; one group on the surface of scales reflects white light, while two other deeper groups (the melaniridophores and the stratum argenteum) are iridescent. The results presented here show that: (1) The scale leucophores reflect white light by a Tyndall light-scattering mechanism, by virtue of the presence of randomly oriented organelles of “novel” morphology. (2) The iridophores of the melaniridophores contain stacks of irregularly-spaced, large reflecting platelets which function as an imperfect multiple thin layer interference system. (3) The stratum argenteum consists of a continuous layer(s) of iridophores with reflecting platelets which are so regularly packed as to approach an ideal multiple thin layer interference system. (4) In all three types of light reflecting cells, the dimensions and packing (orientation) of the reflecting organelles satisfactorily account for the chromogenic properties of the cells, including colors as viewed under transmitted, reflected, or polarized light. (5) The spacial relationships between these light reflecting cells and adjoining melanophores are different for each type of light reflecting cell. Furthermore, we propose to replace the term reflecting platelet with refractosome.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Journal of Morphology 155 (1978), S. 181-192 
    ISSN: 0362-2525
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: New data on the brain of Latimeria indicate that previous estimates of the brain weight were too high by a factor of two. Our data suggest a brain weight of 1.1-1.5 grams for a specimen with a body weight of 30 kilograms. Quantitative data on major divisions of the brain are presented for the first time, and the relative size of the major brain divisions is similar to that of sturgeons and generalized sharks (such as hexanchids and squalids). Examination of brain component weight (s): body weight plots in a sample of non-teleost actinopterygian fishes indicates that all major divisions of the brain, except the telencephalon, are larger than in Latimeria. Brain component sizes in Latimeria are more similar to those extrapolated for amphibian brains than to those for actinopterygians. However, the cerebellum of Latimeria is considerably larger than that of amphibians.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Journal of Morphology 196 (1988), S. 253-282 
    ISSN: 0362-2525
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: The peritrophic membrane of Drosophila melanogaster consists of four layers, each associated with a specific region of the folded epithelial lining of the cardia. The epithelium is adapted to produce this multilaminar peritrophic membrane by bringing together several regions of foregut and midgut, each characterized by a distinctively differentiated cell type. The very thin, electron-dense inner layer of the peritrophic membrane originates adjacent to the cuticular surface of the stomadeal valve and so appears to require some contribution by the underlying foregut cells. These foregut cells are characterized by dense concentrations of glycogen, extensive arrays of smooth endoplasmic reticulum, and pleated apical plasma membranes. The second and thickest layer of the peritrophic membrane coalesces from amorphous, periodic acid-Schiff-positive material between the microvilli of midgut cells in the neck of the valve. The third layer of the peritrophic membrane is composed of fine electron-dense granules associated with the tall midgut cells of the outer cardia wall. These columnar cells are characterized by cytoplasm filled with extensive rough endoplasmic reticulum and numerous Golgi bodies and by an apical projection filled with secretory vesicles and covered by microvilli. The fourth, outer layer of the peritrophic membrane originates over the brush border of the cuboidal midgut cells, which connect the cardia with the ventriculus.
    Additional Material: 12 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Journal of Morphology 207 (1991), S. 201-210 
    ISSN: 0362-2525
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: Salt glands of the domestic duck Anas platyrhynchos differ from those of the herring gull Larus argentatus and other birds. In ducks, each salt gland consists of distinct medial and lateral segments. Centrally located drainage ducts that extend along the entire length of these medial and lateral segments collect hypertonic fluid secreted by an array of lobules. Each lobule is formed by a single mass of branched tubules in which the direction of capillary blood flow is opposite to that of the secreted fluid. This fluid drains from the medial segment through an external duct that opens into the nasal cavity at the base of the vestibular fold. A duct from the lateral segment loops and opens onto the surface of the nasal septum. The structure and function of the secretory cells is reviewed briefly within the context of our study of the configuration of duck nasal salt glands.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Journal of Morphology 207 (1991), S. 165-172 
    ISSN: 0362-2525
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: Dissections of Sudan black B stained specimens reveal that, of a complex of medial, intermediate, and lateral muscles of skates, presumed homologous to the cucullaris of sharks, only the lateral muscle is innervated by a branch or branches of the vagus and is inserted, in part, to the fused pharyngobranchials of the caudal visceral arches. The medial and intermediate muscles are supplied by separate branches of rostral spinal nerves and do not attach to the branchial skeleton. The lateral muscle therefore is the most likely homologue of the cucullaris (trapezius) of sharks and perhaps other fishes and tetrapods. The medial and intermediate muscles appear to be part of the axial musculature.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Journal of Morphology 175 (1983), S. 27-32 
    ISSN: 0362-2525
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: Three pairs of specialized axons found in other muscoid flies are absent in the tsetse, Glossina morsitans, which also lacks the tergotrochanteral muscle. Neither light nor electron microscopy could demonstrate any evidence for the cervical giant fiber axon, the peripherally synapsing axon, or the tergotrochanteral motor axon. The specialized characteristics of these axons must have been altered during the evolution of Glossina. This divergence of individual neurons from the more typical muscoid pattern not only demonstrates the evolutionary modification of specific identified cells; it may also provide an opportunity to study the ontogenetic determination of unique neuronal features.
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Journal of Morphology 202 (1989), S. 435-455 
    ISSN: 0362-2525
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: In each of 30 dipteran species, representing 13 acalyptrate and 7 calyptrate families, the cardia is formed from specialized cells at the junction between foregut and midgut. Foregut epithelium forms the stomodeal valve; midgut epithelium envelops the valve to form the cardia's outer wall. Cytological characteristics within these epithelia differ from region to region and from species to species. Since the cardia secretes the peritrophic membrane, cardias with diverse patterns of cellular differentiation may be expected to produce peritrophic membranes with similarly diverse properties. Close relatives often share more details of cardia structure than do distantly related taxa. Within the monophyletic Calyptratae, a common pattern of cellular differentiation includes three distinct zones of columnar midgut cells enclosing a flanged stomodeal valve. Among species in the paraphyletic Acalyptratae, midgut typically includes a single zone of tall columnar cells, while the valve may be spheroidal, cylindrical, conical, or flanged. The correlation of phylogenetic distance with divergence in cardia organization implies a strong influence of ancestry upon current structure, regardless of current diet. However, at least some of the observed diversity in cardia structure is associated with dietary divergence. Calyptrate flies with derived blood-feeding behavior display cellular differentiation that is simplified from that seen in calyptrate relatives with less specialized feeding habits. This evolutionary modification suggests that cardia organization and hence peritrophic membrane structure can adapt to dietary changes, with possible significance for the spatial organization of digestive processes and interactions with ingested microorganisms.
    Additional Material: 22 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Journal of Morphology 196 (1988), S. 137-156 
    ISSN: 0362-2525
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: The nephron of adult bowfin, Amia calva, was described using light and electron microscopic techniques. The kidney of the bowfin possesses an abundant supply of renal corpuscles with each consisting of a glomerulus and a Bowman's capsule of visceral (podocyte) and parietal layers. No juxtaglomerular apparatus is present. The epithelium of the tubule is continuous with the parietal epithelium and is divisible in descending order into neck, first proximal, second proximal, first distal, second distal, and collecting segments. The tubules drain into a complex system of collecting ducts that ultimately unite with the main excretory duct, the archinephric duct. Mucous cells are the dominant cell throughout the entire ductular system. Nephrostomes are dispersed along the kidney capsule.The neck segment has a ciliated epithelium, and while both proximal segments possess a prominent brush border, the fine structure of the first implies involvement in protein absorption and the second in the transport and reabsorption of solutes. The cells of the first distal segment are characterized by deep infolding of the plasma membrane and a rich supply of mitochrondria suggesting the presence of a mechanism for ion transport. The second distal segment is composed of cells resembling the chloride cells of fishes and these cells are present in progressively decreasing numbers in the collecting segment and duct system so that only a few are present in the epithelium of the archinephric duct. The “renal chloride cells” possess an abundant network of smooth tubules and numerous mitochondria with a rich supply of cristae. Glycogen is also a conspicuous component of these cells. The presence of “renal chloride cells” in this freshwater holostean, in other relatively primitive freshwater teleosts, and in larval and adult lampreys is discussed with reference to both phylogeny and the need for a special mechanism for renal ion conservation through absorption.
    Additional Material: 25 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...