Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Breast cancer research and treatment 47 (1998), S. 219-233 
    ISSN: 1573-7217
    Keywords: breast cancer ; estrogen ; insulin-like growth factors ; mannose 6-phosphate/IGF2 receptor ; paracrine factors ; stromal cells
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Local environmental signals regulate the growth and development of both normal and malignant breast epithelium. Members of the insulin-like growth factor (IGF) family likely influence both of these processes. The localization of IGF2 to stroma specifically surrounding malignant breast epithelium indicates that this growth factor may play a critical role in the genesis or maintenance of this transformed phenotype. Recent studies have sought to understand the mechanism by which IGF2 expressing fibroblasts are localized to the periphery of malignant breast cancer cells. In addition, the consequences of the expression of IGF-signaling components likely expand beyond their direct effects on mitogenesis. Indirect effects predominantly associated with the IGF2 receptor could also influence the invasive potential of breast tumor cells.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Breast cancer research and treatment 22 (1992), S. 21-29 
    ISSN: 1573-7217
    Keywords: autocrine growth factors ; hormone dependence ; IGF-I ; IGF-II ; paracrine growth factors ; stromal cells
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The insulin-like growth factors (IGFs) are mitogens for many cancer cell types. In breast cancer cells, IGF-I and IGF-II have both been shown to stimulate cell proliferation. However, IGF-I mRNA has not been found in human breast cancer cell lines, making it unlikely that IGF-I is commonly expressed as an autocrine growth factor for breast cancer cells. Nevertheless, IGF-I mRNA can be detected in breast cancer tissue samples, and in situ hybridization studies have shown that the message originates from the stromal cells adjacent to normal lobules. IGF-II, on the other hand, has been detected in some breast cancer cell lines. In the estrogen receptor positive cell line T47-D, IGF-II mRNA was induced by estradiol. Furthermore, transfection of an IGF-II expression vector into a previously estrogen-dependent cell line resulted in hormone independent growth. Thus, IGF-II can be expressed as an autocrine growth factor in some breast cancers and its expression may, in part, result in hormone independence. Finally, stromal cells obtained from breast tissues showed that IGF-I was commonly expressed in fibroblasts derived from non-malignant biopsy specimens, while IGF-II mRNA was detected in fibroblasts adjacent to malignant tissue. These studies suggest that IGF-II expression may be important in both autocrine and paracrine regulation of breast cancer cell growth.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 0021-9541
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: Retinoids are currently being tested for the treatment and prevention of several human cancers, including breast cancer. However, the anti-cancer and growth inhibitory mechanisms of retinoids are not well understood. All-trans retinoic acid (RA) inhibits the growth of the estrogen receptor-positive (ER+) breast cancer cell line, MCF-7, in a reversible and dose-dependent manner. In contrast, insulin-like growth factors (IGF-I,IGF-II) and insulin are potent stimulators of the proliferation of MCF-7 and several other breast cancer cell lines. Pharmacologic doses of RA (≤10-6M) completely inhibit IGF-I-stimulated MCF-7 cell growth. Published data suggest that the growth inhibitory action of RA on IGF-stimulated cell growth is linear and dose-dependent, similar to RA inhibition of unstimulated or estradiol-stimulated MCF-7 cell growth. Surprisingly, we have found that IGF-I or insulin-stimulated cell growth is increased to a maximum of 132% and 127%, respectively, by cotreatment with 10-7 M RA, and that 10-9-10-7 M RA increase cell proliferation compared to IGF-I or insulin alone. MCF-7 cells that stably overexpress IGF-II are also resistant to the growth inhibitory effects of 10-9-10-7 M RA. Treatment with the IGF-I receptor blocking antibody, αIR-3, restores RA-induced growth inhibition of IGF-I-treated or IGF-II-overexpressing MCF-7 cells, indicating that the IGF-I receptor is mediating these effects. IGFs cannot reverse all RA effects since the altered cell culture morphology of RA-treated cells is similar in growth-inhibited cultures and in IGF-II expressing clones that are resistant to RA-induced growth inhibition. These results indicate that RA action on MCF-7 cells is biphasic in the presence of IGF-I or insulin with 10-9-10-7 M RA enhancing cell proliferation and ≥ 10-6M RA causing growth inhibition. As IGF-I and IGF-II ligands are frequently detectable in breast tumor tissues, their potential for modulation of RA effects should be considered when evaluating retinoids for use in in vivo experimental studies and for clinical purposes. Additionally, the therapeutic use of inhibitors of IGF action in combination with RA is suggested by these studies. © 1995 Wiley-Liss Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...