Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 0362-2525
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: The feline anterior sartorius is a long strap-like muscle composed of short muscle fibers. Nerve branches that enter this muscle contain the axons of motor units whose constituent muscle fibers are distributed asymmetrically within the muscle. In the present study, twitch and tetanic isometric contractions were evoked by stimulating individual nerve branches while muscle force was recorded and intramuscular length changes were monitored optically by the movement of reflective markers on the muscle. Contractions elicited by stimulating the parent nerve produced little change in the positions of the surface markers. Contractions elicited by stimulating the proximally or distally directed nerve branches caused the muscle to shorten at the end closest to the nerve branch and lengthen at the opposite end. Some muscles were supplied by a centrally directed nerve branch whose stimulation produced variable effects: in some cases a portion of the muscle shortened whereas the rest lengthened, but in other cases, the positions of the surface markers showed little change. The intramuscular length changes produced by stimulating single nerve branches were greater during isometric contractions at short whole-muscle lengths than at long whole-muscle lengths. The twitch and tetanic length-tension relationships obtained by stimulating the individual nerve branches were not congruent with the length-tension relationship produced when the parent nerve was stimulated. At short whole-muscle lengths, stimulation of a single nerve branch generated only a small fraction of the force that could be generated by the muscle when the parent nerve was stimulated. As whole-muscle length increased, an increased fraction of total muscle force could be generated by stimulating a single nerve branch. The results suggest that a complex relationship between passive and active elements contributes to the total muscle force and depends on the distribution of active and passive muscle units throughout the muscle. © 1992 Wiley-Liss, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Journal of Morphology 216 (1993), S. 47-63 
    ISSN: 0362-2525
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: The morphometry, histochemistry, and biomechanical relationships of rectus capitis muscles were examined in adult cats. This family of muscles contained six members on the dorsal, ventral, and lateral aspects of the upper cervical vertebral column. Three dorsal muscles (rectus capitis posterior major, medius, and minor) formed a layered complex spanning from C1 and C2 to the skull. Rectus capitis posterior major was composed predominantly of fast fibers, but the other two deeper muscles contained progressively higher proportions of slow fibers. One ventral muscle, rectus capitis anterior major, was architecturally complex. It originated from several cervical vertebrae and appeared to be divided into two different heads. In contrast, rectus capitis anterior minor and rectus capitis lateralis were short, parallel-fibered muscles spanning between the skull and C1. The ventral muscles all had nonuniform distributions of muscle-fiber types in which fast fibers predominated. Dorsal and ventral muscle groupings usually had cross-sectional areas of 0.5 cm2 or more, reflecting a potential capacity to generate maximal tetanic force in excess of 9 N. Biomechanical analyses suggested that one muscle, rectus capitis lateralis, had its largest moment in lateral flexion, whereas the other muscles had large, posturally dependent moment arms appropriate for actions in flexion-extension. The observation that most rectus muscles have relatively large cross-sectional areas and high fast-fiber proportions suggests that the muscles may have important phasic as well as postural roles during head movement. © 1993 Wiley-Liss, Inc.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    The @Anatomical Record 58 (1934), S. 139-143 
    ISSN: 0003-276X
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...