Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Journal of Morphology 58 (1935), S. 285-353 
    ISSN: 0362-2525
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: The larval epithelium cells of Mycale syrinx (O. Schm.) unite syncytially with one another. The stratum so formed is continuous with the syncytial interior of the larva and into this interior the epithelial nuclei are drawn. Many of them degenerate and are digested by the syncytium or, eventually, by nucleolate cells. The syncytial cytoplasm breaks up into cell bodies, some surrounding epithelial nuclei and thus forming choanocytes, others surrounding nucleolate and non-nucleolate mesenchyme nuclei. The larval epithelial cells do not then become the choanocytes. Only their nuclei are specifically determined. The bodies of the choanocytes are picked out of the general syncytium in accordance with the location which the nuclei may occupy at the time. Non-nucleolate cells of the interior break through to the surface and form epidermis. Or non-nucleolate nuclei, usually not in special cell bodies but in the general syncytium, are drawn to the surface, the surface layer there condensing to form epidermis.There is a provisional formation of limiting membranes by the reticular syncytium around spaces of the interior and at the surface. The definitive cellular membranes, epidermis and canal epithelia, are only completed later. Some mesenchyme cells may be digested by the general syncytium. Such cells lie in vacuoles, as in a digesting protozoan.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Molecular Reproduction and Development 39 (1994), S. 56-61 
    ISSN: 1040-452X
    Keywords: Receptor binding ; Growth factor ; Wild-type transfectants ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology
    Notes: We reported previously that the mitogenic activities of FGF-1 (acidic FGF) could be dissociated from its receptor-binding activities by site-directed mutagenesis of lysine 132 to a glutamic acid. Although the mutant FGF-1 protein binds to the high-affinity tyrosinekinase receptors, stimulates tyrosine-kinase activity, and promotes expression of immediate-early genes, it is not mitogenic for a variety of tested cell lines. Interestingly, the mutant FGF-1 is capable of other functions associated with the wild-type protein such as promotion of mesoderm formation in Xenopus animal caps. The mutant exhibits a reduced apparent affinity for heparin-Sepharose compared to the wild-type protein. The relationship between the reduced heparin affinity and lack of mitogenic activity of this mutant is not clear. Recent data indicates the relationship is not as simple as reduced stability of the protein. When NIH 3T3 cells are transfected with expression vectors encoding either wild-type or mutant FGF-1, a transformed phenotype can be seen in cells overexpressing the wild-type FGF-1, whereas cells overexpressing mutant FGF-1 appear normal. Analysis of lysates of these cells indicates that a tyrosine-kinase cascade, distinct from that associated with the high-affinity cell surface receptors, has been activated in the wild-type transfected cells but not in the mutant transfected cells. Although both transfected cell lines contain FGF-1 cell surface receptors as judged by crosslinking studies, the wild-type transfects are refractory to exogenous FGF-1, whereas the mutant transfectants respond normally. Together these results support an intracellular role of wild-type FGF-1 in mediating certain of its functions. In addition, they demonstrate that certain functions of the growth factor can be dissociated at the structural level. Additional mutagenesis studies have resulted in the identification of mutants with heparin-binding or mitogenic deficiencies that do not correlate as well as those of the 132 mutant. It appears that the inactivity of the lysine 132 mutant is related, in part, to cysteine 131. © 1994 Wiley-Liss, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 0730-2312
    Keywords: proto-oncogene expression ; nuclear translocation ; mitogenesis ; tyrosine kinase ; angiogenesis ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: The heparin-binding or fibroblast growth factors (HBGFs) modulate cell growth and migration, angiogenesis, wound repair, neurite extension, and mesoderm induction. Relatively little is known regarding the precise mechanism of action of these growth factors or the structural basis for their action. A better understanding of the structural basis for the different activities of these proteins should lead to the development of agonists and antagonists of specific HBGF-1 can be dissociated from the receptor-binding activities of the growth factor by site-directed mutagenesis of a single lysine residue. Thus, the mutant HBGF-1 has normal receptor-binding activity and is capable of stimulating tyrosine kinase activity and proto-oncogene expression but is not able to elicit a mitogenic response. A similar dissociation of early events such as proto-oncogene expression from the mitogenic response is observed when the human wild-type HBGF-1 is used in the absence of added heparin. These results indicate that intracellular sites of action by the growth factor may be required to complete the mitogenic response. Further evidence for this idea is provided by transfection experiments where NIH 3T3 cells are engineered to produce large quantities of wild-type or mutant HBGF-1. Production of wild-type induces a transformed phenotype, whereas over-production of the mutant does not. The majority of both forms of the protein is found in the nuclear fraction of the transfected cells. Additional site-directed mutagenesis of putative nuclear translocation sequences in the wild-type protein do not affect mitogenic activity. Thus, the role of nuclear translocation in the mechanisms of action of HBGF-1 remains unclear.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Cellular Physiology 125 (1985), S. 61-71 
    ISSN: 0021-9541
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: The origin of the cyanine dye fluorescence signal in murine and human peripheral blood leukocytes was investigated using the oxa- and indo-carbo-cyanines di-O-C5(3). and di-l-C5(3). Fluorescence signals from individual cells suspended with nanomolar concentrations of the dyes were measured in a flow cytometer modified to permit simultaneous four-parameter analysis (including two-color fluorescence or fluorescence polarization measurements). The contributions of mitochondrial membrane potential (Ψm) and plasma membrane potential (Ψpm) to the total voltage-sensitive fluorescence signal were found to depend on the equilibrium extracellular dye concentration, manipulated in these experiments by varying the ratio of dye to cell density. Hence, conditions could be chosen that amplified either the Ψm or the Ψpm component. Selective depolarization of lymphocytes or polymorphonuclear leukocytes (PMN) in mixed cell suspensions demonstrated that defining the partition of dye between cells and medium is requisite to assessing the heterogeneity of cell responses by cyanine dye fluorescence. At extracellular dye concentrations exceeding 5 nM in equilibrated cell suspensions, both mitochondrial and plasma membrane dye toxicity were observed. In murine splenic lymphocytes, plasma membrane toxicity (dye-induced depolarization) was selective for the B lymphocytes. Certain problems in calibration of Ψpm with valinomycin at low dye concentrations and perturbations of Ψpm by mitochondrial inhibitors are presented. These findings address the current controversy concerning Ψm and Ψpm measurement in intact cells by cyanine dye fluorescence. The finding of selective toxicity at low cyanine dye concentrations suggest that purported differences in resting Ψm among cells or changes in Ψpm with cell activation may reflect varible susceptibility to dye toxicity rather than intrinsic cell properties.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Cellular Physiology 125 (1985), S. 72-81 
    ISSN: 0021-9541
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: A method is described for quantitative measurement of lymphocyte transmembrane electrical potential difference (Ψ) by flow cytometric recording of the oxonol dye fluorescence of single cells. Both the simultaneous collection and analysis of multiple optical parameters and the use of a negatively charged oxonol probe allowed more accurate measurement of Ψ than may be obtained by bulk cell suspension techniques employing cationic voltage indicators. Mouse spleen and human blood lymphocyte Ψ was calculated to be -70 mV. T and B lymphocytes maintain a constant Ψ as extracellular K+ is varied from 2 to 10 mM and the deviation from K+ equilibrium potentials (Ek) is shown to result from Na+ permeability. At [K+]o values greater than 10 mM, lymphocytes behave as K+ electrodes. Examination of lymphocyte subsets showed that hyperpolarization induced by the Ca2+ ionophore A23187 occurs only in T cells. This response was identified as activation of a Ca2+-sensitive K+ channel by pharmacologic manipulations. Hence, T cells depolarized by 4-aminopyridine (4-AP, 10 mM) were observed to return to resting Ψ by A23187-induced elevation of [Ca2+]i. Cells depolarized by quinine (100 μM) were unaffected by A23187. The Ca2+-activated channel does not contribute to resting Ψ in T cells since it may be selectively blocked by quinine (20 μM) or modulated by calmodulin antagonists (5 μM trifluperazine) without affecting resting Ψ.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 0148-7280
    Keywords: calcium-modulated proteins ; calmodulin ; calmodulin-binding proteins ; spermatozoa ; membranes ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology
    Notes: Reproducible concentrations of calmodulin representing approximately 0.1% of the membrane protein were detected in purified plasma membranes from bovine epididymal spermatozoa. When membranes were isolated in the presence of 1 mM EGTA, the amount of calmodulin associated with the plasma membranes was not reduced. Calmodulin-binding proteins were detected in both purified plasma membranes and in a mixed membrane fraction containing both plasma membranes and cytoplasmic droplet membranes. A calcium-dependent, calmodulin-binding protein of apparent molecular weight 123,000 was detected in both fractions. In the presence of 1 mM EDTA, putative calcium-independent calmodulin-binding proteins of apparent molecular weights 93,000, 32,000, 18,000, and 15,000 were detected in the plasma membrane fraction. The 15,000 Mr polypeptide was also present in the mixed membrane fraction but the three proteins of higher molecular weight were reduced or absent in this fraction.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 0021-9541
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: Retinoids are currently being tested for the treatment and prevention of several human cancers, including breast cancer. However, the anti-cancer and growth inhibitory mechanisms of retinoids are not well understood. All-trans retinoic acid (RA) inhibits the growth of the estrogen receptor-positive (ER+) breast cancer cell line, MCF-7, in a reversible and dose-dependent manner. In contrast, insulin-like growth factors (IGF-I,IGF-II) and insulin are potent stimulators of the proliferation of MCF-7 and several other breast cancer cell lines. Pharmacologic doses of RA (≤10-6M) completely inhibit IGF-I-stimulated MCF-7 cell growth. Published data suggest that the growth inhibitory action of RA on IGF-stimulated cell growth is linear and dose-dependent, similar to RA inhibition of unstimulated or estradiol-stimulated MCF-7 cell growth. Surprisingly, we have found that IGF-I or insulin-stimulated cell growth is increased to a maximum of 132% and 127%, respectively, by cotreatment with 10-7 M RA, and that 10-9-10-7 M RA increase cell proliferation compared to IGF-I or insulin alone. MCF-7 cells that stably overexpress IGF-II are also resistant to the growth inhibitory effects of 10-9-10-7 M RA. Treatment with the IGF-I receptor blocking antibody, αIR-3, restores RA-induced growth inhibition of IGF-I-treated or IGF-II-overexpressing MCF-7 cells, indicating that the IGF-I receptor is mediating these effects. IGFs cannot reverse all RA effects since the altered cell culture morphology of RA-treated cells is similar in growth-inhibited cultures and in IGF-II expressing clones that are resistant to RA-induced growth inhibition. These results indicate that RA action on MCF-7 cells is biphasic in the presence of IGF-I or insulin with 10-9-10-7 M RA enhancing cell proliferation and ≥ 10-6M RA causing growth inhibition. As IGF-I and IGF-II ligands are frequently detectable in breast tumor tissues, their potential for modulation of RA effects should be considered when evaluating retinoids for use in in vivo experimental studies and for clinical purposes. Additionally, the therapeutic use of inhibitors of IGF action in combination with RA is suggested by these studies. © 1995 Wiley-Liss Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...