Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Sexual plant reproduction 1 (1988), S. 228-233 
    ISSN: 1432-2145
    Keywords: Microspore mother cell ; Cytokinesis ; Impatiens sultani ; Cell plate
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Cytokinesis in Impatiens sultani microspore mother cells is simultaneous. It starts with the formation of small ingrowths of the surrounding callosic wall. Next, an incomplete cell plate is formed by fusion of small dictyosome vesicles. The cell plate consists of a network of anastomosing tubules and sacs. Aggregates of fusing vesicles are associated with bundles of microtubules, which are oriented perpendicular to the plane of the future cell walls. In the sacculate parts of the cell plate, some callose is deposited, while the associated microtubules disappear. The cell walls ultimately develop by enlargement of the previously formed wall ingrowths, which successively incorporate the elements of the cell plate. The enlargement and thickening of the walls is not accompanied by a further fusion and incorporation of dictyosome vesicles.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1615-6102
    Keywords: Cell division ; Confocal microscopy ; Convallaria majalis ; Generative cell ; Liliaceae ; Microtubules
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The organization of the microtubule cytoskeleton in the generative cell ofConvallaria majalis has been studied during migration of the cell through the pollen tube and its division into the two sperm cells. Analysis by conventional or confocal laser scanning microscopy after tubulin staining was used to investigate changes of the microtubule cytoskeleton during generative-cell migration and division in the pollen tube. Staining of DNA with 4′,6-diamidino-2-phenylindole was used to correlate the rearrangement of microtubules with nuclear division during sperm cell formation. Before pollen germination the generative cell is spindle-shaped, with microtubules organized in bundles and distributed in the cell cortex to form a basketlike structure beneath the generative-cell plasma membrane. During generative-cell migration through the pollen tube, the organization of the microtubule bundles changes following nuclear division. A typical metaphase plate is not usually formed. The generative-cell division is characterized by the extension of microtubules concomitant with a significant cell elongation. After karyokinesis, microtubule bundles reorganize to form a phragmoplast between the two sperm nuclei. The microtubule organization during generative-cell division inConvallaria majalis shows some similarities but also differences to that in other members of the Liliaceae.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Protoplasma 148 (1989), S. 1-7 
    ISSN: 1615-6102
    Keywords: Microspore mother cell ; Microspore ; Impatiens sultani ; Cytoplasm ; Organelles
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary From early prophase stage until probaculae formation within the tetrad stage considerable cytoplasmic changes occur. The changes merely concern the ribosome population, the plasma matrix and, the endomembrane system formed by endoplasmic reticulum, dictyosomes and dictyosome-vesicles. The ultrastructure and morphology of mitochondria and plastids remain fairly unchanged, apart from the mobilization of starch during primexine formation. During meiotic prophase there is an increase in ribosome number, accompanied by the presence of nucleoloids in the cytoplasm. Simultaneously the electron density of the cytoplasm strongly increases, indicating a fair increase in protein content. Nucleoloids are also observed in the cytoplasm after primexine formation, accompanied by localized accumulation of ribosomes. Up to the individualization of the microspores the dictyosomes are in an inactive state. After that, they become very active, especially during primexine formation when numerous large dictyosome-vesicles are present. The endoplasmic reticulum (ER), initially in a plate-like configuration, disappears from the cytoplasm during primexine formation. Abundant, smooth and tubular ER is present when probaculum formation starts.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1615-6102
    Keywords: Brassica napus ; Cell division ; Male germ unit ; Pollen ; Sperm cells
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The association of the two sperm cells inBrassica napus pollen following the generative cell division was investigated. The generative cell during division is located in the center of the pollen grain, within the vegetative cell. The space present between the two cells is slightly irregular as seen following standard glutaraldehyde fixation. After completion of mitosis vesicles appear in the equatorial plane, coalescing centripetally to form a cell plate which fuses with the membrane of the generative cell, dividing it in two sperm cells. They are isolated from the vegetative cell by the space between the two cell membranes and are separated from each other by a similar space resulting from the cell plate formed during cytokinesis.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...