Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Ultrastructure  (6)
  • Sperm cells  (3)
  • Cell division  (2)
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Sexual plant reproduction 2 (1989), S. 193-198 
    ISSN: 1432-2145
    Keywords: Polymorphism ; Ultrastructure ; Pollen grains ; Canna indica L ; Tannin
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Our investigations on Canna indica L. indicate that the pollen of this species is polymorphic: there are two types of pollen — a larger type and a comparatively smaller type. Transmission electron microscopy (TEM) revealed the presence of small vacuoles containing tannic substances in the generative cell (GC) of the larger grains: the GC of the mature grain contained a higher quantity of tannins than the GC of the immature grain. Mitochondria, lipid bodies, rough endoplasmic reticulum (RER) and microtubular bundles were present in the cytoplasm of the GC. Numerous mitochondria, lipid bodies and plastids were also present in the vegetative cell (VC), with the mitochondria clustered around the vegetative nucleus. The plastids were observed to be associated with the RER cisterns. During the maturation process, the number of starch grains contained in the plastids decreased.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Sexual plant reproduction 4 (1991), S. 28-35 
    ISSN: 1432-2145
    Keywords: Tapetal cells ; Brassica oleracea L ; Ultrastructure
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The ultrastructure of the secretory, binucleate tapetum of Brassica oleracea in the micro spore mother cell (MMC) stage through to the mature pollen stage is reported. The tapetal cells differentiate as highly specialized cells whose development is involved in lipid accumulation in their final stage. They start breaking down just before anther dehiscence. Nuclei with dispersed chromatin, large nucleoli and many ribosomes in the cytoplasm characterize the tapetal cells. The wall-bearing tapetum phase ends at the tetrade stage. The dissolution of tapetal walls begins from the inner tangential wall oriented towards the loculus and proceeds gradually along the radial walls to the outer tangential one. The plasmodesmata transversing the radial walls between tapetal cells persist until the mature microspore, long after loss of the inner tangential wall. After wall dissolution, the tapetal protoplasts retain their integrity and position within the anther locule. The tapetal cell membrane is in direct contact with the exine of the microspores/pollen grains and forms tubular evaginations that increase its surface area and appear to be involved in the translocation of solutes from the tapetal cells to the microspores/ pollen grains. The tapetal cells exhibit a polarity expressed by spatial differentiation in the radial direction.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Sexual plant reproduction 4 (1991), S. 176-181 
    ISSN: 1432-2145
    Keywords: Pollen ; Brassica napus ; Mitoses ; Ultrastructure
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Brassica napus pollen development during the formation of the generative cell and sperm cells is analysed with light and electron microscopy. The generative cell is formed as a small lenticular cell attached to the intine, as a result of the unequal first mitosis. After detaching itself from the intine, the generative cell becomes spherical, and its wall morphology changes. Simultaneously, the vegetative nucleus enlarges, becomes euchromatic and forms a large nucleolus. In addition, the cytoplasm of the vegetative cell develops a complex ultrastructure that is characterized by an extensive RER organized in stacks, numerous dictyosomes and Golgi vesicles and a large quantity of lipid bodies. Microbodies, which are present at the mature stage, are not yet formed. The generative cell undergoes an equal division which results in two spindle-shaped sperm cells. This cell division occurs through the concerted action of cell constriction and cell plate formation. The two sperm cells remain enveloped within one continuous vegetative plasma membrane. One sperm cell becomes anchored onto the vegetative nucleus by a long extension enclosed within a deep invagination of the vegetative nucleus. Plastid inheritance appears to be strictly maternal since the sperm cells do not contain plastids; plastids are excluded from the generative cell even in the first mitosis.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Sexual plant reproduction 5 (1992), S. 64-71 
    ISSN: 1432-2145
    Keywords: Generative cell ; Isolation ; Microtubules ; Ultrastructure
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Upon squashing of the pollen grain, the isolated generative cell ofNicotiana tabacum looses its spindle shape to become spherical; this phenomenon is independent of the sucrose concentration used. The time necessary for this change can vary from 1 min (0% sucrose) to 20 min (30% sucrose). The microtubular cytoskeleton was studied by means of immunofluorescence and electron microscopy. Just after isolation, 5 to 15 clearly visible bundles in microtubules organized in a basket-like structure are present. After 15 min in medium with 15% sucrose, the microtubular cytoskeleton disappears, and a diffusely spread tubulin can be observed. Neither the addition of 10–20 μM taxol to the medium, nor the omission of Ca2+ to the medium has any effect on the changes in cell shape and loss of microtubular bundles after isolation.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Sexual plant reproduction 1 (1988), S. 208-216 
    ISSN: 1432-2145
    Keywords: Megagametophyte ; Synergids ; Brassica campestris ; Ultrastructure
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary In Brassica campestris, both synergids of the ovule degenerate before the arrival of the pollen tube. Synergid degeneration does not depend on pollination. At the non-degenerated stage, the synergids are completely filled with a complexly organized cytoplasm containing numerous mitochondria with many cristae, a large number of dictyosomes with many associated vesicles, and a very extensive rough endoplasmic reticulum. The degenerative changes that occur in the cytoplasm of the synergids are characterized by a loss of visibility of the membranes of the endoplasmic reticulum and the simultaneous formation of dense deposits on the surrounding membranes of the mitochondria. Locally, the plasma membranes of the synergids disappear, and some ground plasma of the synergids penetrates into the space between the plasma membranes of the egg cell and the central cell.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Sexual plant reproduction 4 (1991), S. 145-154 
    ISSN: 1432-2145
    Keywords: Angiosperm gametes ; Egg cell ; Embryosac ; Gamete isolation ; Gametophytic cells ; Sperm cells ; Generative cells
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The availability of generative cells, sperm cells, embryo sacs and egg cells from angiosperm plants in isolated conditions has opened up many prospects: study of the mechanism of recognition and fusion between gametes of opposite sex and detailed observation of the process of fertilization, biochemical and genetic analysis of gamete-specific components and genetic engineering in combination with in vitro fertilization. This review provides a list of about ninety publications, in which the isolation of male or female angiosperm gametes and the closely related generative cells and embryo sacs is reported. The species used are summarized in two tables. A description is given of the diverse isolation techniques, which consist of enzymatic digestion, bursting of pollen by osmotic shock, squashing, grinding and micro-dissection. Viability of isolated cells and yield, two important aspects of biotechnological manipulation, are emphasized. A critical evaluation of the most significant results obtained so far with isolated material is presented together with notes on prospects for the future.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1615-6102
    Keywords: Cell division ; Confocal microscopy ; Convallaria majalis ; Generative cell ; Liliaceae ; Microtubules
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The organization of the microtubule cytoskeleton in the generative cell ofConvallaria majalis has been studied during migration of the cell through the pollen tube and its division into the two sperm cells. Analysis by conventional or confocal laser scanning microscopy after tubulin staining was used to investigate changes of the microtubule cytoskeleton during generative-cell migration and division in the pollen tube. Staining of DNA with 4′,6-diamidino-2-phenylindole was used to correlate the rearrangement of microtubules with nuclear division during sperm cell formation. Before pollen germination the generative cell is spindle-shaped, with microtubules organized in bundles and distributed in the cell cortex to form a basketlike structure beneath the generative-cell plasma membrane. During generative-cell migration through the pollen tube, the organization of the microtubule bundles changes following nuclear division. A typical metaphase plate is not usually formed. The generative-cell division is characterized by the extension of microtubules concomitant with a significant cell elongation. After karyokinesis, microtubule bundles reorganize to form a phragmoplast between the two sperm nuclei. The microtubule organization during generative-cell division inConvallaria majalis shows some similarities but also differences to that in other members of the Liliaceae.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1615-6102
    Keywords: Brassica napus ; Cell division ; Male germ unit ; Pollen ; Sperm cells
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The association of the two sperm cells inBrassica napus pollen following the generative cell division was investigated. The generative cell during division is located in the center of the pollen grain, within the vegetative cell. The space present between the two cells is slightly irregular as seen following standard glutaraldehyde fixation. After completion of mitosis vesicles appear in the equatorial plane, coalescing centripetally to form a cell plate which fuses with the membrane of the generative cell, dividing it in two sperm cells. They are isolated from the vegetative cell by the space between the two cell membranes and are separated from each other by a similar space resulting from the cell plate formed during cytokinesis.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1615-6102
    Keywords: Pollen tube ; Microtubules ; Cellular division ; Generative cell ; Sperm cells
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The microtubular cytoskeleton of the generative cell (GC) ofHyacinthus orientalis has been studied until the formation of the sperm cells (SCs). Immunofluorescence procedures in combination with confocal laser scanning microscopy (CLSM) has enabled the visualization of the organization of the microtubular cytoskeleton. Chemical fixation and freeze-fixation electron microscopy have been used to investigate the cytoskeleton and the ultrastructural organization of the GC and SCs. During pollen activation the GC is spindle-shaped. Microtubules (MTs) are organized as bundles and distributed in proximity of the GC plasmamembrane, forming a basket-like structure. Following migration through the pollen tube, the basket-like structure becomes more intertwined. During the nuclear division the MTs are involved in the segregation of the chromosomes and kinetochores are clearly discernible. Association with organelles is also observed. The chromosomes of the GC remain condensed until they separate in two sperm nuclei. The pre-prophase band was never observed. At the end of the GC division the microtubular network reorganizes in the two SCs.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Springer
    Protoplasma 172 (1993), S. 77-83 
    ISSN: 1615-6102
    Keywords: Ornithogalum virens ; Generative cell ; Mitosis ; Pollen ; Ultrastructure
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Ornithogalum virens is a bicellular pollen species. In mature pollen, the generative nucleus is at advanced prophase. Mitosis of the generative cell is resumed just after pollen rehydration and prometaphase occurs within 10 min of germination. Prometaphase is manifested by nuclear envelope breakdown and the appearance of spindle microtubules in the nucleoplasm region. At this stage the number of cytoplasmic microtubules located in the generative cell periphery appears to decrease. Endoplasmic reticulum-like cisternae originating from the nuclear envelope tend to be spaced around the chromosomes, outside the area of the forming mitotic spindle. Some also begin to penetrate the spindle area. The results are discussed in terms of the generative cell cycle in bicellular pollen.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...