Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1573-5028
    Keywords: soybean β-tubulins ; genomic sequence ; genomic sequence ; protein sequence ; interspecies sequence comparison ; hydropathy analysis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Two divergent β-tubulin genes (designated Sβ-1 and Sβ-2) were isolated by screening a soybean genomic library with a Chlamydomonas reinhardtii β-tubulin cDNA probe. Restriction fragment analysis of the clones recovered, and of soybean genomic DNA, indicated that these represent two unique classes of structurally different β-tubulin genes in the soybean genome. However, it is possible that unidentified members of these classes or additional highly divergent classes of β-tubulin genes (thus far undetected) exist in the soybean genome. The Sβ-1 and Sβ-2 genomic clones were sequenced, revealing that both are potentially functional genes which would encode β-tubulins of 445 and 449 amino acids, respectively. A comparison of their derived amino acid sequences with β-tubulins from several organisms showed that they are most homologous to Chlamydomonas β-tubulin (85–87%), with lesser degrees of homology to β-tubulins of vertebrate species (79–83%), Trypanosoma brucei (80–81%) and Saccharomyces cerevisiae (66–68%). The amino acid sequences of Sβ-1 and Sβ-2 are as divergent from each other as they are from the Chlamydomonas β-tubulin. The amino acids at the diverged positions in Sβ-2 are nearly all conservative substitutions while in Sβ-1, 18 of the 69 substitutions were non-conservative. Both soybean β-tubulin genes contain two introns in exactly the same positions. The first soybean intron is located in the same position as the third intron of the Chlamydomonas β-tubulin genes. Codon usage in the two soybean β-tubulins is remarkably similar (D 2=0.87), but differs from codon usage in other soybean genes.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-2048
    Keywords: Cell expansion ; Hyacinthus ; Microtubule ; Root contraction ; Tubulin
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Root contraction in hyacinth (Hyacinthus orientalis L.) is marked by reoriented cell growth in the cortex of the contractile region. Cellular volume of the inner cortex enlarges fourfold during root contraction. This is associated with large increases in the radial and tangential dimensions and decreases in the longitudinal dimension of the cells. In order to determine the possible role of microtubules (MTs) in these changes we compared tubulin levels and MT numbers and orientation in contracted and non-contracted regions of hyacinth roots. Tubulin content was analysed by a radioimmunoassay; MT numbers and orientation were analyzed by counting profiles in sectioned material using transmission electron microscopy. Contracted tissue was found to have significantly higher levels of tubulin on a per-cell basis than non-contracted tissue, and also increased tubulin levels relative to total protein. The spatial MT frequencies were the same in contracted and non-contracted tissues, indicating a proportional increase in MT numbers in the expanded cells. Although the absolute spatial frequency of MTs was constant, the orientation, as determined by morphometric analysis of MT profiles, was not. While in the longitudinal section plane 42% of the MTs in the non-contracted cells were oblique, in the contracted cells the percentage of MTs presenting oblique profiles increased to 87%. Additionally, a qualitative difference in MTs was observed in contracted cells; electron-opaque material was seen peripherally associated with the MTs of the inner cortex. The changes in tubulin levels and in MT numbers as well as the qualitative differences in the MTs of contracted and non-contracted root regions indicate that, in hyacinth, reoriented cellular enlargement associated with root contraction cannot be explained simply by shifts in the arrangement of preexisting cortical MT arrays, but involves more complex changes in the cytoskeleton.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...