Bibliothek

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    ISSN: 1432-1424
    Schlagwort(e): Gill chloride cell ; Cl− secretion ; Fundulus heteroclitus ; Cell volume regulation ; Na+/H+ exchanger ; Cl−/HCO 3 − exchanger
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Biologie , Chemie und Pharmazie
    Notizen: Abstract Transition from low salt water to sea water of the euryhaline fish, Fundulus heteroclitus, involves a rapid signal that induces salt secretion by the gill chloride cells. An increase of 65 mOsm in plasma osmolarity was found during the transition. The isolated, chloridecell-rich opercular epithelium of sea-water-adapted Fundulus exposed to 50 mOsm mannitol on the basolateral side showed a 100% increase in chloride secretion, which was inhibited by bumetanide 10−4 m and 10−4 m DPC (N-Phenylanthranilic acid). No effect of these drugs was found on apical side exposure. A Na+/H+ exchanger, demonstrated by NH4Cl exposure, was inhibited by amiloride and its analogues and stimulated by IBMX, phorbol esters, and epithelial growth factor (EGF). Inhibition of the Na+/H+ exchanger blocks the chloride secretion increase due to basolateral hypertonicity. A Cl−/HCO 3 − exchanger was also found in the chloride cells, inhibited by 10−4 m DIDS but not involved in the hyperosmotic response. Ca2+ concentration in the medium was critical for the stimulation of Cl− secretion to occur. Chloride cell volume shrinks in response to hypertonicity of the basolateral side in sea-water-adapted operculi; no effect was found on the apical side. Freshwater-adapted fish chloride cells show increased water permeability of the apical side. It is concluded that the rapid signal for adaptation to higher salinities is an increased tonicity of the plasma that induces chloride cell shrinkage, increased chloride secretion with activation of the Na+K+2Cl− cotransporter, the Na+/H+ exchanger and opening of Cl− channels.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...