Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Spinal cord  (2)
  • Cerebellum  (1)
  • Differentiation  (1)
  • Gerontology  (1)
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Anatomy and embryology 164 (1982), S. 443-454 
    ISSN: 1432-0568
    Keywords: Spinal cord ; Differentiation ; Migration ; 3H-Thymidine autoradiography ; Amphibia
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary in order to determine the time and site of origin and the final location of various cell groups in the spinal cord, tadpoles of Xenopus laevis, ranging from stage 48 to stage 56 were treated with tritiated thymidine and sacrified at various stages from 49 to 66 (stages according to Nieuwkoop and Faber (1967). From the poorly developed matrix at stage 48–49 not only ventral horn cells, but also neuroblasts of the intermediate zone and the dorsal horn arise. Both the matrix and the ventricle expand in a dorsal direction. From the well-developed matrix at stage 54, in which the mitotic activity is almost exclusively confined to its dorsal part, mainly cells of the dorsal horn develop. However, this later-stage matrix also gives rise to a considerable number of neuroblasts, which become located in the central parts of the intermediate zone and the ventral horn. Generally the later-born cells come to lie dorsomedially to the older ones. The neuroblasts of the lateral motor column, however, migrate through and settle ventrolaterally to their predecessors. Our observations do not support the basal plate-alar plate concept of His (1893).
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Anatomy and embryology 144 (1974), S. 315-336 
    ISSN: 1432-0568
    Keywords: Cerebellum ; Mormyrid fishes
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The corpus cerebelli of mormyrid fishes is strongly developed and differentiated into four lobes: C1−C4. Although all of these lobes contain the characteristic cerebellar layers: granular, ganglionic and molecular, they show distinct architectonic differences. A previous study revealed that the ganglionic layer of C1, in addition to Purkinje elements contains conspicuous giant cells. In the present paper the results of a further analysis of C1 are reported. This analysis is based on serially sectioned brains of Gnathonemus petersii, stained according to Nissl, Bodian and Häggquist. Semi-thin sections were stained with p-phenylenediamine. Routine EM techniques were used to visualize synaptic relations. Mossy fibres and granule, Golgi, Purkinje and stellate cells are located characteristically throughout C1. It appeared that the giant cells of a previous study represent the largest elements of a population which has been termed now the eurydendroid cells. The average size of the latter is somewhat larger than that of the Purkinje cells, but both groups of cells show a considerable overlap in the size of their somata. Purkinje cells and eurydendroid cells are present throughout the ganglionic layer and both have a flattened, sagittally oriented, dendritic tree that extends into the molecular layer. Yet, the eurydendroid cells (EC) display the following characteristics which distinguish them from Purkinje cells (PC): (1) In EC the Nissl substance is dispersed diffusely throughout the soma, whereas in PC it tends to be concentrated around the nucleus, (2) The soma/nucleus ratio for EC is distinctly larger than for PC, (3) The dendritic trees of EC extend over a larger stretch of the molecular layer than those of PC, hence the term EC, (4) The dendrites of EC are more widely spaced and oriented less strictly parallel to each other than those of PC, (5) The dendrites of EC are somewhat irregular in outline and not covered with spines, in contrast to those of PC, (6) The axons of EC are oriented radially and join bundles of coarse fibres which leave the cerebellum whereas the axons of PC extend and ramify within the ganglionic layer, (7) The somata of EC, contrary to those of PC, are enveloped by a dense axonal plexus which forms numerous synaptic terminals on them. The numerical ratio of EC: PC was 1:5.5. The circuitry in C1 and the possible functional roles of its constituent neurons are discussed. It is pointed out that in this lobe the axons of PC impinge on EC and that the latter constitute its output system.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Anatomy and embryology 164 (1982), S. 427-441 
    ISSN: 1432-0568
    Keywords: Spinal cord ; Morphogenesis ; Histogenesis ; Amphibia
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The morphogenesis and histogenesis of the spinal cord of Xenopus were examined. The study encompasses the developmental period between stage 41 and stage 66 (stages according to Nieuwkoop and Faber 1967). This period can roughly be divided into three phases. From stage 50 up to stage 53 strong proliferation and rapid growth are the most striking features. This developmental phase is preceded and followed by less dynamic periods. From stage 41 up to stage 50 the rate of proliferation is relatively low. The numbers of cells in the matrix and in the mantle layer are very small. In the mantle layer two classes of early differentiated transient neurons can be distinguished: primitive giant sensory or Rohon-Beard cells and primitive motor neurons. From stage 46 onward the originally tube-shaped spinal cord swells at the thoracic level into a thoracic enlargement. After stage 50 the proliferation strongly increases until a maximum at stage 53. Concomitantly a considerable acceleration of growth takes place. The major part of the mitoses are always concentrated in the dorsal part of the matrix. From stage 51 onward the cervical and lumbar regions show much more mitoses than the thoracic part. Distinct cervical and lumbar enlargements develop and are going to mask the thoracic swelling of the cord. From stage 54 on proliferation continues on an increasingly low level. The period between stage 54 and stage 66 is characterized by differentiation of the spinal neuronal elements.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Medical & biological engineering & computing 27 (1989), S. 502-506 
    ISSN: 1741-0444
    Keywords: Decubitus ulcers ; Diagnostic method ; Gerontology ; Pressure sores ; Prevention ; Susceptibility
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Abstract A method for measuring the susceptibility of a patient to develop decubitus ulcers is described and initially evaluated. It is based on an indirect, noninvasive measurement of the transient regional blood flow response after a test pressure load which simulates the external stimulus for pressure-sore formation. This method was developed to determine the individual risk of a patient and to study the subfactors which contribute to the susceptibility. This would also offer the possibility of evaluating the effect of preventive treatment aimed at reducing the susceptibility. The method was found to discriminate between preselected elderly patients at risk on the one hand, and non-risk patients and healthy young adults on the other hand. No differences in blood flow responses were found between the non-risk elderly patients and the healthy young adults. This suggests that age per se is not a factor in the formation of pressure sores. In the risk group the recovery time after pressure relief was found to be three times as long as the duration of the pressure exercise. This indicates that the recovery time after pressure exercise may be as important as the period of pressure exercise in deducing the risk of developing decubitus ulcers.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...