Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 119 (1998), S. 166-170 
    ISSN: 1432-1106
    Keywords: Key words Locus coeruleus ; Analgesia ; Inflammation ; Naloxone ; Rat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract  We evaluated the effects of systemic administration of a low dose of naloxone in rats with bilateral lesions in the area of the locus coeruleus (LC) under conditions of unilateral inflammation, compared with those in sham-operated rats. In each group, rats received a single s.c. injection of carrageenan (6 mg in 0.15 ml saline), and effects of a low dose of naloxone (5 μg/kg, i.p.) on thermal nociception were examined at 4 h and 7 days following the induction of unilateral hindpaw inflammation. The antinociceptive effect was assessed by prolongation of the paw withdrawal latency (PWL) to noxious thermal stimuli. Prior to induction of inflammation, the low dose of naloxone had no significant effect on PWLs in either the sham-operated or the LC-lesioned rats. Four hours after carrageenan injection, the low dose of naloxone produced prolongation of PWLs in the sham-operated rats but failed to induce antinociception in the LC-lesioned rats. Antinociceptive effects were observed in both groups of rats 7 days after carrageenan injection. These results suggest that the LC is involved in naloxone-induced antinociception during the early phase of inflammation.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-2013
    Keywords: Cerebellum ; Medial corticonuclear zone ; Macular vestibular input
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract 1. The responses of neurons located in the rostral part of the fastigial nucleus to sinusoidal tilt of the animal were recorded in precollicular decerebrate cats and compared with those elicited by the same stimulation in Purkinje (P) cells located in the vermal cortex of the cerebellar anterior lobe. In particular, by fixing the head and the body of the animal to the tilting table and by rotating the animal around its longitudinal axis, it was possible to elicit a selective labyrinth input without eliciting a neck input. 2. Among the 60 fastigial neurons tested, 43 units responded to sinusoidal tilt at the frequency of 0.026 Hz and at the peak amplitude of displacement of 10°–15°. On the other hand, among 106 P-cells tested for a mossy fiber (MF) response to the labyrinth input, 32 units were affected by the same parameters of stimulation. In both instances the response consisted in a periodic modulation of the discharge frequency, which was related to the position of the animal. Most of the responses of the fastigial units to the labyrinth input were characterized by a peak excitation in phase with side-down tilt of the animal and by inhibition during side-up tilt, whereas most of the MF-responses of the P-cells to the labyrinth input showed just the opposite behavior. 3. The threshold amplitude of tilt responsible for these responses varied in different units from 1° to 3° at the frequency of 0.026 Hz. The sensitivity of the first harmonic of the unit responses to tilt, expressed in percentage change of the average firing rate per degree of displacement, corresponded on the average to 1.73±1.16, S.D., for the fastigal neurons and to 1.61±0.94, S.D., for the P-cells. These values did not change or were only slightly modified as a result of increasing amplitude of stimulation from 1°–3° to 15°–25° at a frequency of 0.026 Hz. Moreover, changes in amplitude of stimulation at the parameters reported above did not greatly modify the phase angle of the first harmonic of the responses relative to the side-down position of the animal. Units located in the medial corticonuclear zone of the cerebellum did not show any change in sensitivity and phase angle of the responses by increasing the frequency of tilt from 0.015 to 0.20 Hz at the fixed amplitude of 10°–15°, thus indicating that these responses depended upon stimulation of macular receptors. In other units, however, these changes in frequency of rotation modified the phase angle of the responses, which became related to velocity rather than to the positional signal, due to stimulation of semicircular canal receptors. 4. The observation that most of the responsive fastigial neurons increased their firing rate, while most of the responding P-cells located in the vermal cortex of the cerebellar anterior lobe decreased their firing rate during side-down rotation of the animal is discussed in relation to the postural changes of the limbs elicited during asymmetric stimulation of macular receptors.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-1106
    Keywords: Key words Spinal cord ; Dorsal horn neuron ; Protein kinase C ; Pain modulation ; Periaqueductal gray ; Rat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract  The effects of a protein kinase C (PKC) activator, 12-O-tetradecanoylphorbol-13-acetate (TPA), on the activity and periaqueductal gray (PAG)-induced inhibition of rat dorsal horn neurons of the lumbar spinal cord were tested. A microdialysis fiber was placed through the dorsal horn for the purpose of local application of pharmacological agents. Extracellular single-unit recordings from dorsal horn neurons were made near the microdialysis fiber. TPA was tested on nociceptive dorsal horn cells. There was a significant increase in the background activity and responses to ”brush”, with no changes in responses to pressure and pinch stimuli. TPA also significantly blocked the PAG-induced inhibition of responses to brush, press, and pinch. These effects were eliminated by coadministration of the PKC inhibitor NPC-15437. The solvent, which contained dimethyl sulfoxide, was also tested for its effect on the responses to peripheral mechanical stimuli and PAG-induced inhibition of the dorsal horn neurons. There were no significant changes. This experiment suggests that activation of the PKC second messenger system might increase the activity of dorsal horn neurons and their responses to peripheral stimuli; in addition, the phorbol ester attenuated the PAG-induced descending inhibition of the dorsal horn neuron activity.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 17 (1973), S. 169-176 
    ISSN: 1432-1106
    Keywords: Spinal cord ; Dorsal horn ; Negative intermediary cord potential ; Field potential
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Electrical stimulation of the sural, superficial peroneal and plantar nerves in anesthetized cats produces a sequence of potentials in the spinal cord lumbosacral enlargement. The distributions of the spinal cord dorsum negative intermediary potential (N1 wave) and of the associated field potential recorded in depth from the spinal gray matter were mapped. The N1 wave produced by the sural nerve was largest at the junction of the S1 and L7 segments, whereas that evoked by the other two nerves was maximum in L6 and L7. The field potentials recorded in depth also showed a differential distribution. The maximum negativity during phase 2, corresponding to the N1 cord dorsum potential, was found to lie laterally in the dorsal horn when the sural nerve was stimulated, but medially when the plantar nerve was activated. The superficial peroneal nerve produced its largest negative field potential in the central region of the dorsal horn. The negative field potentials from the sural and superficial peroneal nerves were not as well separated spatially from each other as they were from the potential evoked by the plantar nerve.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...