Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Anatomy and embryology 163 (1981), S. 185-200 
    ISSN: 1432-0568
    Keywords: Cerebral cortex ; Neurons ; Lizard ; Tanycytes
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary An electron microscopic analysis was made of the small-celled part of the mediodorsal cortex of the lizard Agama agama. This cortex consists of four layers: Superficial plexiform layer, cellular layer, deep plexiform layer and fiber layer. In the superficial plexiform layer one type of solitary neuron with smooth dendrites is present. Three types of axon terminals can be observed: terminals with a moderately electron dense matrix packed with spherical vesicles (S1 type), axon terminals with an electron lucent matrix containing fewer spherical synaptic vesicles than the S1 type (S2 type) and axon terminals with an electron lucent matrix and scattered pleomorphic synaptic vesicles (F type). F type axon terminals are larger than S terminals. At the pial surface endfeet of tanycytic processes form a limiting glial layer, contacting one another by means of gap junctions. In the cellular layer perikarya of pyramidal neurons are densely packed. The karyoplasm of these neurons shows either evenly dispersed or discretely clumped chromatin. Spiny dendrites arise from the perikarya and extend into both the superficial and deep plexiform layers. The structure of the deep plexiform layer is roughly similar to that of the superficial plexiform layer. The fiber layer contains the majority of the afferent and efferent axons of the mediodorsal cortex. The axons are myelinated and unmyelinated. Between the fibers, scattered solitary neurons are present, often accompanied by glial cells. The lateral ventricle beneath the fiber layer is lined by a single row of ependymal tanycytes. Tanycytic processes traverse the cortical layers and may form endfeet at the pial surface. Protoplasmic excresenses from some ependymal cells protrude into the ventricle.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...