Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Nerve cell injury  (5)
  • Cerebral ischemia  (4)
  • Cerebral damage  (2)
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Acta neuropathologica 62 (1983), S. 87-95 
    ISSN: 1432-0533
    Keywords: Status epilepticus ; Nerve cell injury ; Bicuculline ; Rat cerebral cortex
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary It was earlier shown that bicuculline-induced status epilepticus gives rise to profound acute changes in the rat cerebral cortex, i.e. edema and neuronal alterations. In the present study, we explored to what extent interruption of the seizure activity reverses the changes observed. To that end, status epilepticus of 1 and 2 h duration was induced by bicuculline before the seizures were arrested by i.v. injection of diazepam. The brain was then fixed by vascular perfusion either 5 min (1 h of seizures) or 2 h (1 and 2 h of seizures) of recovery and cerebral cortical tissue was studied by light (LM) and electron microscopy (EM). Already 5 min following the arrest of seizure activity most of the astrocytic edema had disappeared, and the number of injured neurons was clearly reduced. After 2 h of recovery, following 1 h of status epilepticus, the edema was virtually absent, and only few injured cells were found (only about 1% of the neuronal population). When recovery was instituted after 2 h of status epilepticus, numerous dark, triangular neurons were found. In the last group an adequate blood pressure could not be obtained. Therefore, the cellular alterations observed were probably not the result of the seizure activityper se. After 5 min of recovery, EM studies showed condensed, dark-staining injured neurons, similar to those previously observed in non-recovery animals. However, an increased incidence of swollen mitochondria was observed. After 2 h of recovery a few severely injured neurons remained which showed signs of progressive injury with fragmentation of the cell body.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Acta neuropathologica 50 (1980), S. 31-41 
    ISSN: 1432-0533
    Keywords: Hypoglycemia ; Nerve cell injury ; Biochemistry ; Light microscopy ; Rat cerebral cortex
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Profound hypoglycemia causing the disappearance of spontaneous EEG activity was induced by insulin in rats. For analysis of cerebral cortical concentrations of labile phosphates, glycolytic metabolites and amino acids, the brain was frozen in situ. For microscopic analysis of the corresponding cerebral cortical areas the brain was fixed by perfusion. Hypoglycemia with an isoelectric EEG for 30 and 60 min caused severe perturbation of the cerebral energy metabolites. After both 30 and 60 min of isoelectric EEG, two microscopically different types of nerve cell injury were seen. Type I injury was characterized by angulated, darkly stained neurons with perineuronal vacuolation, mainly affecting small neurons in cortical layer 3. Type II injured neurons, mainly larger ones in layers 5–6, were slightly swollen with vacuolation or clearing (depending on the histotechnique used) of the peripheral cytoplasm, but had no nuclear changes. Recovery was induced by glucose injection. Improvement in the cerebral energy state occurred during the 30 min recovery period even after 60 min of hypoglycemia. However, the persisting reduction in the size of adenine nucleotide and amino acid pools after 30 or 180 min recovery suggested that some cells remained damaged. In confirmation many type I injured neurons persisted during the recovery suggesting an irreversible injury. The disappearance of virtually all type II injuries indicated reversibility of these histopathological changes. The microscopic changes in hypoglycemia were different from those in anoxia-ischemia suggesting a dissimilar pathogenesis in these states despite the common final pathway of energy failure.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Acta neuropathologica 67 (1985), S. 37-50 
    ISSN: 1432-0533
    Keywords: Hypoglycemia ; Cerebral damage ; Dark neurons ; Neuronal necrosis ; Caudate ; Putamen ; Rat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The caudate nucleus and putamen belong to the selectively vulnerable brain regions which incur neuronal damage in clinical and experimental settings of both hypoglycemia and ischemia. We have previously documented the density and distribution of the hypoglycemic damage in rat caudoputamen, but the evolution of the injury, i.e., the sequence of structural changes, has not been assessed. Therefore, in the present study we analyze the light and electron microscopic alterations in the caudoputamen of rats exposed to standardized, pure insults of severe hypoglycemia with isoelectric EEG for 10–60 min, or in rats which, following insults of 30 or 60 min, were allowed to recover for periods from 5 min to 6 months. The hypoglycemic insult produced severe nerve cell injury in the dorsolateral caudoputamen. Immediately after the insult abnormal light neurons with clearing of the peripheral cytoplasm were present. These cells disappeared early in the receovery period, as they do in the cerebral cortex. Dark neurons were also present, but unlike those in the cerebral cortex they did not appear until recovery was instituted. Their number increased for a couple of hours and they became acidophilic within 4–6 h. At this stage, electron microscopy revealed severe clumping of the nuclear chromatin and cytoplasm as well as incipient fragmentation of cell membranes, all these changes indicating an irreversible injury. Within 24 h flocculent densities appeared in the mitochondria and by day 2–3 of recovery the great majority of the medium-sized neurons had undergone karyorrhexis and cytorrhexis, their remnants being subsequently removed by macrophages. After some weeks only large and a few medium-sized neurons remained amidst reactive astrocytes and numerous macrophages. The delay in the appearance of dark, lethally injured medium-sized neurons until the recovery was instituted suggests an effect that does not become apparent until the substrate supply and energy production are restored. Furthermore, it pointt out again the selectivity of the hypoglycemic nerve cell injury with respect to the type (metabolic characteristics?) and topographic location of the neurons.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Acta neuropathologica 64 (1984), S. 177-191 
    ISSN: 1432-0533
    Keywords: Hypoglycemia ; Cerebral damage ; Cerebrospinal fluid ; Interstitial fluid ; Neuronal necrosis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Rats were exposed to insulin-induced hypoglycemia resulting in periods of cerebral isoelectricity ranging from 10 to 60 min. After recovery with glucose, they were allowed to wake up and survive for 1 week. Control rats were recovered at the stage of EEG slowing. After sub-serial sectioning, the number and distribution of dying neurons was assessed in each brain region. Acid fuchsin was found to stain moribund neurons a brilliant red. Brains from control rats showed no dying neurons. From 10 to 60 min of cerebral isoelectricity, the number of dying neurons per brain correlated positively with the number of minutes of cerebral isoelectricity up to the maximum examined period of 60 min. Neuronal necrosis was found in the major brain regions vulnerable to several different insults. However, within each region the damage was not distributed as observed in ischemia. A superficial to deep gradient in the density of neuronal necrosis was seen in the cerebral cortex. More severe damage revealed a gradient in relation to the subjacent white matter as well. The caudatoputamen was involved more heavily near the white matter, and in more severely affected animals near the angle of the lateral ventricle. The hippocampus showed dense neuronal necrosis at the crest of the dentate gyrus and a gradient of increasing selective neuronal necrosis medially in CA1. The CA3 zone, while relatively resistant, showed neuronal necrosis in relation to the lateral ventricle in animals with hydrocephalus. Sharp demarcations between normal and damaged neuropil were found in the hippocampus. The periventricular amygdaloid nuclei showed damage closest to the lateral ventricles. The cerebellum was affected first near the foramina of Luschka, with damage occurring over the hemispheres in more severely affected animals. Purkinje cells were affected first, but basket cells were damaged as well. Rare necrotic neurons were seen in brain stem nuclei. The spinal cord showed necrosis of neurons in all areas of the gray matter. Infarction was not seen in this study. The possibility is discussed that a neurotoxic substance borne in the tissue fluid and cerebrospinal fluid (CSF) contributes to the pathogenesis of neuronal necrosis in hypoglycemic brain damage.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Acta neuropathologica 59 (1983), S. 11-24 
    ISSN: 1432-0533
    Keywords: Status epilepticus ; Nerve cell injury ; Brain edema ; Rat hippocampal formation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Status epilepticus with a duration of 1 or 2 h was induced in rats by i. v. injection of the GABA receptor blocking agent, bicuculline. Immediately there-after, or following a 2 h recovery period, the brains were fixed by vascular perfusion and processed for light and electron microscopy to characterize the type and distribution of morphological changes in the hippocampal formation. In a previous study (Söderfeldt et al. 1981) astrocytic edema and wide-spread neuronal changes of two different kinds occurred in the fronto-parietal cortex of the same animals. Type 1 injured neurons were characterized by condensation of karyoplasm and cytoplasm (type 1a), which in some neurons became so intense that the nucleus could no longer be clearly discerned (type 1b). The type 2 injured neurons had slitformed cytoplasmic vacuoles chiefly caused by dilatation of the rough endoplasmic reticulum. In the hippocampus the most conspicuous alteration was astrocytic edema which was most marked around the perikarya of pyramidal neurons in CA1-CA4 and subiculum. In the dentate gyrus the edema was less pronounced and, when present, affected particularly the hilar zone of the stratum granulosum. The nerve cell changes were less pronounced than in the cerebral cortex. The vast majority of the hippocampal pyramidal neurons in CA1-CA4 showed minor configurational and tinctorial abnormalities (incipient type 1a change). Severe nerve cell alterations (type 1b) were present but very rarely affected the pyramidal neurons of CA1-CA4 and subiculum, whereas in the dentate gyrus pyramidal basket neurons of stratum granulosum and pyramidal nerve cells in stratum polymorhe showed the severe type 1b changes. As compared with the frontoparietal cortex (Söderfeldt et al. 1981) the type 2 changes were extremely rare. In the early recovery period after 1 h of status epilepticus the astrocytic edema and the incipient type 1a changes had almost entirely disappeared, whereas a few condensed and dark-staining type 1b injured neurons remained. Thus, in this model of status epilepticus the most marked response in the hippocampal formation is astrocytic edema in the layers where pyramidal perikarya are located. Incipient, mild nerve cell changes which appear to be reversible were frequent and widespread in the entire hippocampal formation.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Acta neuropathologica 76 (1988), S. 253-264 
    ISSN: 1432-0533
    Keywords: Cerebral ischemia ; Rat ; Hyperglycemia ; Postischemic seizures ; Substantia nigra
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary This study explores how hyperglycemia and enhanced tissue lactic acidosis influence the density and distribution of ischemic brain damage. Ischemia of 10-min duration was produced in glucose-infused rats by bilateral carotid clamping combined with hypotension, and the brains were perfusion-fixed with formaldehyde following recirculation of 3, 6, 12 and 18 h. After about 24 h the hyperglycemic animals developed seizures, and at that time two groups were added, one fixed prior to, and one after the onset of seizures. Similar experiments were made on normoglycemic animals with recirculation times of 1.5 to 96 h. After fixation the brains were embedded in paraffin, subserially sectioned and stained with celestine blue/acid fuchsin. In both normo- and hyperglycemic animals, neurons in the dentate hilus of the hippocampal formation and in the thalamic lateral reticular nucleus showed early and dense neuronal necrosis. In neocortex, hippocampal CA1 sector and caudoputamen, hyperglycemia shortened the delay before damage occurred and markedly enhanced the damage. Specific for the hyperglycemic animals was damage of the substantia nigra, pars reticulata (SNPR), manifest already at the earliest recovery periods studied; this finding is discussed in relationship to the role SNPR is assumed to play in preventing spread of seizure discharge.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Acta neuropathologica 75 (1987), S. 131-139 
    ISSN: 1432-0533
    Keywords: Cerebral ischemia ; Hyperglycemia ; Substantia nigra ; Electron microscopy
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Preischemic hyperglycemia induced by feeding or glucose infusion worsens the brain damage and the clinical outcome following ischemia of a given duration and density, and characteristically causes postischemic seizure activity. Light microscopy has previously showed that, in the rat, transient hyperglycemic ischemia induced by bilateral carotid occlusion in combination with arterial hypotension causes a uni- or bilateral lesion in the pars reticulata of the substantia nigra. Since this region has a central role in preventing seizure discharges the present study was carried out to determine the ultrastructural characteristics of this lesion. In rats with 10 min of transient hyperglycemic ischemia followed by recirculation for 1 to 18 h, the pars reticulata of the substantia nigra showed signs of status spongiosus, as well as extensive nerve cell alterations. These changes were observed after all recovery periods studied. The spongiotic appearance was mainly caused by swelling of dendrites and, to a lesser degree, by astrocytic swelling. The dendrites were expanded at all recovery times but the severity increased during the later periods of recirculation. These swollen dendrites contained severely expanded mitochondrias and endoplasmic reticulum. The cytoskeletal elements showed disordered lining of microtubules. Two major types of nerve cell alterations were present: a “pale” and a “dark” variety. The pale type was the most frequent cell alteration. It occurred in all experimental groups and at all time points. Redistribution of the nuclear chromatin and of cytoplasmic organelles as well as swelling of the same type as in the dendrites were the essential changes. The dark neurons were much fewer in number and occupied a peripheral position in the pars reticulata. Astrocytic foot processes appeared to be dilated around the dark neurons. Swelling of astrocyte processes was most pronounced in the 1 h recovery animals. Both types of neurons showed severe mitochondrial alterations of the type observed in dendrites. Occasionally, mitochondrial alterations were found in astrocytic processes as well. Blood vessel alterations were lacking. Previous studies have shown that in this model of ischemia the substantia nigra has a relatively well-preserved blood perfusion. In view of this the extensive histopathological lesions are surprising. We speculate that the lesions primarily involve excitotoxic damage to dendrites, with pronounced lactic acidosis playing a contributory role in causing axonal and glial pathology as well.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Springer
    Acta neuropathologica 64 (1984), S. 319-332 
    ISSN: 1432-0533
    Keywords: Cerebral ischemia ; Selective vulnerability ; Neuronal necrosis ; Cell death ; Rat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The density and distribution of brain damage after 2–10 min of cerebral ischemia was studied in the rat. Ischemia was produced by a combination of carotid clamping and hypotension, followed by 1 week recovery. The brains were perfusion-fixed with formaldehyde, embedded in paraffin, subserially sectioned, and stained with acid fuchsin/cresyl violet. The number of necrotic neurons in the cerebral cortex, hippocampus, and caudate nucleus was assessed by direct visual counting. Somewhat unexpectedly, mild brain damage was observed in some animals already after 2 min, and more consistently after 4 min of ischemia. This damage affected CA4 and CA1 pyramids in the hippocampus, and neurons in the subiculum. Necrosis of neocortical cells began to appear after 4 min and CA3 hippocampal damage after 6 min of ischemia, while neurons in the caudoputamen were affected first after 8–10 min. Selective neuronal necrosis of the cerebral cortex worsened into infarction after higher doses of insult. Damage was worst over the superolateral convexity of the hemisphere, in the middle laminae of the cerebral cortex. The caudate nucleus showed geographically demarcated zones of selective neuronal necrosis, damage to neurons in the dorsolateral portion showing an all-or-none pattern. Other structures involved included the amygdaloid, the thalamic reticular nucleus, the septal nuclei, the pars reticularis of the substantia nigra, and the cerebellar vermis.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Springer
    Acta neuropathologica 50 (1980), S. 43-52 
    ISSN: 1432-0533
    Keywords: Hypoglycemia ; Nerve cell injury ; Electron microscopy ; Rat cerebral cortex
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Severe hypoglycemia was induced in rats by insulin. The brain was fixed in situ by perfusion after the spontaneous EEG had disappeared for 30 or 60 min or after recovery had been induced for 30 or 180 min by glucose injection. Samples from the cerebral cortex from the area corresponding to the previous metabolic studies were processed for electron microscopy. The light-microscopic finding of two different types of nerve cell injury, reported in a preceding communication (Agardh et al. 1980), was also verified at the ultrastructural level. The type I injury was characterized by cellular shrinkage, condensation of the cell sap and nuclei, and perineuronal astrocytic swelling. No swelling of mitochondria occurred. The slightly swollen type II injured neurons showed contraction of mitochondria, disintegration of ribosomes, loss of RER, and appearance of membrane whorls, while their nuclear chromatin remained evenly distributed. No transition from one type to the other was observed. Neither type of nerve cell injury in hypoglycemia was like that commonly seen in anoxic-ischemic insults indicating a different pathogenesis in these states despite the common final pathway of energy failure. The loss of endoplasmic membranes and disintegration of ribosomes suggests that these structures might be sacrificed for energy production in the absence of normal substrates. During recovery, though, the number of type I injured neurons decreased while some of the remaining ones appeared even more severely affected, suggesting irreversible damage. Type II injured neurons were no longer seen indicating reversibility of these changes.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Springer
    Acta neuropathologica 67 (1985), S. 13-24 
    ISSN: 1432-0533
    Keywords: Hypoglycemia ; Cerebral cortex ; Nerve cell injury ; Dark neurons ; Acidophilic neurons ; Mitochondria ; Golgi apparatus ; Cell necrosis ; Rat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary In the course of a study on the pathogenesis of neuronal necrosis in severe hypoglycemia, the morphological characteristics reflecting reversible and irreversible neuronal lesions were examined as a function of time following normalization of blood glucose. To that end, closely spaced time intervals were studied in the rat cerebral cortex before, during, and up to 1 year after standardized pure hypoglycemic insults of 30 and 60 min of cerebral isoelectricity. Both the superficial and deep layers of the cerebral cortex showed dark and light neurons during and several hours after the insult. By electron microscopy (EM) the dark neurons were characterized by marked condensation of both karyoplasma and cytoplasm, with discernible, tightly packed cytoplasmic organelles. The light neurons displayed clustering of normal organelles around the nucleus with clearing of the peripheral cytoplasm. Some cells, both dark neurons and neurons of normal electron density, contained swollen mitochondrial with fractured cristae. Light neurons disappeared from the cerebral cortex by 4 h of recovery. Some dark neurons in the superficial cortex and almost all in the deep cortex evolved through transitional forms into normal neurons by 6 h recovery. Another portion of the dark neurons in the superficial cortex became acidophilic between 4 and 12 h, and by EM they demonstrated karyorrhexis with stippled electron-dense chromatin. The plasma membrane was disrupted, the cytoplasm was composed of amorphous granular debris, and the mitochondria contained flocculent densities. These definitive indices of irreversible neuronal damage were seen as early as 4–8 h recovery. Subsequently, the acidophilic neurons were removed from the tissue, and gliosis ensued. Thus, even markedly hyperchromatic “dark” neurons are compatible with survival of the cell, as are neurons with conspicuous mitochondrial swelling. Definite nerve cell death is verified as the appearance of acidophilic neurons at which stage extensive damage to mitochondria is already seen in the form of flocculent densities, and cell membranes are ruptured. Our previous results have shown that hypoglycemic neocortical damage affects the superficial laminae, chiefly layer 2. The present results demonstrate that, following the primary insult, this damage evolves relatively rapidly within the first 4–12 h. We have obtained no evidence that additional necrotic neurons are recruited after longer recovery periods.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...