Bibliothek

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Channel forming peptide  (2)
  • Key words: K+ channel  (1)
  • 1
    Digitale Medien
    Digitale Medien
    Springer
    European biophysics journal 20 (1991), S. 229-240 
    ISSN: 1432-1017
    Schlagwort(e): Ion channel ; Channel forming peptide ; α-helix ; Electrostatics
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Biologie , Physik
    Notizen: Abstract Channel forming peptides (CFPs) are amphipathic peptides, of length ca. 20 residues, which adopt an α-helical conformation in the presence of lipid bilayers and form ion channels with electrophysiological properties comparable to those of ion channel proteins. We have modelled CFP channels as bundles of parallel trans-bilayer helices surrounding a central ion-permeable pore. Ion-channel interactions have been explored via accessible surface area calculations, and via evaluation of changes in van der Waals and electrostatic energies as a K+ ion is translated along the length of the pore. Two CFPs have been modelled: (a) zervamicin-A1-16, a synthetic apolar peptaibol related to alamethicin, and (b) δ-toxin from Staphylococcus aureus. Both of these CFPs have previously been shown to form ion channels in planar lipid bilayers, and have been shown to have predominantly helical conformations. Zervamicin-A1-16 channels were modelled as bundles of 4 to 8 parallel helices. Two related helix bundle geometries were explored. K+channel interactions have been shown to involve exposed backbone carbonyl oxygen atoms. δ-Toxin channels were modelled as bundles of 6 parallel helices. Residues Q3, D11 and D18 generate favourable K+-channel interactions. Rotation of W15 about its Cβ-Cγ bond has been shown to be capable of occluding the central pore, and is discussed as a possible model for sidechain conformational changes in relation to ion channel gating.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Digitale Medien
    Digitale Medien
    Springer
    European biophysics journal 21 (1992), S. 117-128 
    ISSN: 1432-1017
    Schlagwort(e): Ion channel ; Peptaibol ; Channel forming peptide ; Planar bilayer
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Biologie , Physik
    Notizen: Abstract The zervamicins (Zrv) are a family of 16 residue peptaibol channel formers, related to the 20 residue peptaibol alamethicin (Alm), but containing a higher proportion of polar sidechains. Zrv-1113 forms multi-level channels in planar lipid (diphytanoyl phosphatidylcholine) bilayers in response to cis positive voltages. Analysis of the voltage and concentration dependence of macroscopic conductances induced by Zrv-IIB suggests that, on average, channels contain ca. 13 peptide monomers. Analysis of single channel conductance levels suggests a similar value. The pattern of successive conductance levels is consistent with a modified helix bundle model in which the higher order bundle are distorted within the plane of the bilayer towards a “torpedo” shaped cross-section. The kinetics of intro-burst switching between adjacent conductance levels are shown to be approximately an order of magnitude faster for Zrv-IIB than for Alm. The channel forming properties of the related naturally occurring peptaibols, Zrv-Leu and Zrv-IC, have also been demonstrated, as have those of the synthetic apolar analogue Zrv-Al-16. The experimental studies on channel formation are combined with the known crystallographic structures of Zrv-Al-16 and Zrv-Leu to develop a molecular model of Zrv-II3 channels.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Digitale Medien
    Digitale Medien
    Springer
    Theoretical chemistry accounts 101 (1999), S. 97-102 
    ISSN: 1432-2234
    Schlagwort(e): Key words: K+ channel ; Glycoporin ; LamB ; ScrY ; Conductance
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Chemie und Pharmazie
    Notizen: Abstract. The Poisson-Boltzmann equation was solved numerically for models of the pore regions of the Shaker K+ channel and of two glycoporins (LamB and ScrY) to yield electrostatic potential profiles along the pore axes. From these potential profiles, single-channel current-voltage (I–V) relations were calculated. The importance of a proper treatment of the ionisation state of two rings of aspartate sidechains at the mouth of the K+ channel pore emerged from such calculations. The calculated most likely state, in which only two of the eight aspartate sidechains were deprotonated, yielded better agreement with experimental conductance data. An approximate calculation of single-channel conductances based simply on pore geometry yielded very similar conductance values for the two glycoporins. This differed from an␣experimentally determined conductance ratio of ScrY:LamB=10:1. Preliminary electrostatics calculations appeared to reproduce the observed difference in conductance between the two glycoporins, confirming that single-channel conductance is determined by electrostatic as well as geometric considerations.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...