Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Chemical Engineering  (8)
  • linear viscoelasticity  (3)
  • monodomain  (2)
  • 1
    ISSN: 1435-1528
    Keywords: Rheology ; liquid crystal ; monodomain ; instability ; conoscopy ; shear
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: Abstract We have measured the shear-induced rotation of the nematic director in a liquid crystalline polymer using poly benzyl glutamate (PBG) as model system. PBG is a well characterized synthetic poly (α amino acid) with rigid chain architecture and well defined conformations. For the experiments it is important to start out with a sample in which the molecules are highly aligned with a uniform director. This so-called monodomain morphology is obtained by use of strong magnetic fields and surface modifications of the sample holders. When shearing the monodomain at a constant rate, the macromolecules rotate initially homogeneously until a periodic director pattern develops. These spatially periodic structures emerge in a narrow range of shear strain and, as shearing continues, disintegrate into a chaotic texture. By varying the initial monodomain director with respect to the flow direction (but within the shear planes) we could show that the periodic patterns do not depend on the shear direction; they are governed by the director of the initial monodomain. We observe conoscopically that at high shear rates the texture becomes uniformly aligned. The molecules are aligned preferentially with an angle of about 4° to the shear direction (against vorticity direction). Interestingly, this agrees very well with predictions made by Larson (1990).
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Rheologica acta 35 (1996), S. 645-655 
    ISSN: 1435-1528
    Keywords: Rheology ; polymers ; poly-dispersity ; linear viscoelasticity ; relaxation time
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: Abstract The relaxation of slightly poly-disperse linear flexible polymers has been expressed in a simplified blending rule which is presumed to be a weighted linear superposition of the relaxation spectra of mono-disperse components which constitute the blend. Discrete components are characterized by their molecular weight M i,weight fraction w i,and relaxation time spectrum H i(λ). ). In contrast to broadly distributed blends in which the small molecules mobilize the large ones and vice versa, we introduce the term “slightly polydisperse” for blends with molecular weight distributions narrow enough to have very little change in the longest relaxation times of each molecular weight component. The properties of this blending rule are analyzed and dynamic data is calculated for slightly poly-disperse polystyrene. As an application, the blending rule is used to determine the characteristic mono-disperse parameters (BSW parameters) of two materials, poly (vinyl methyl ether) and polycarbonate, for which we could not determine their BSW parameters directly since they were not available in nearly monodisperse form. The proposed blending rule can only be applied to systems in which all components are above the entanglement molecular weight, i.e. M i≫M c.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Rheologica acta 33 (1994), S. 473-484 
    ISSN: 1435-1528
    Keywords: Liquid crystal ; monodomain ; conoscopy ; Leslie angle ; flow alignment ; director diffusion
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: Abstract We have developed a modular rheo-optical apparatus to study the flow properties of liquid crystals. Its main components are shearing device, strong magnetic field, and optical microscope. We performed experiments on well defined initial morphologies with uniform molecular alignment. The monodomains were achieved with strong magnetic fields (4.7T). Time-resolved conoscopy is the primary optical technique in our investigation. We propose a simple relation between the distribution of alignment angles over the sample thickness and the conoscopically measured angle, to quantitatively measure the alignment angle in shear flow. We followed the relaxation of a shear-induced splay deformation in small molecule model systems (N-(p-methoxybenzylidene) p-butylaniline (MBBA), pentyl-cyano-biphenyl (5 CB) and a commercially available mixture OM14244). We define a rotational director diffusivity $$D_R = \frac{{K_s }}{{\eta _s }}$$ (K s splay elastic constant. i7s splay viscosity) from the relaxation process and devised a model, based on the diffusion equation to determine their values. The director alignment behavior of the small molecule liquid crystals (SMLC's) in shear flow is well described by the two-dimensional Leslie-Ericksen model. The effect of director elasticity can clearly be seen in our experiments, resulting in a decrease of the steady state alignment angle at smaller Ericksen numbers. We found that there is no strain rate dependence of the director vorticity from 0.002/s to 2/s for poly-(γ-benzyl-D/L-glutamate) (PBG). We determined α2/α3 = −44 for a 2007o solution of 280000 molecular weight PBG in m-cresol at 20°C. The conoscopic interference pattern vanished after 8 strain units from an initially planar alignment and shearing could be reversed up to 10 strain units to completely recover the initial monodomain.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Rheologica acta 36 (1997), S. 330-344 
    ISSN: 1435-1528
    Keywords: Relaxation time spectrum ; monodisperse polymers ; hypergeometric function ; incomplete gamma function ; linear viscoelasticity ; polymer dynamics
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: Abstract The linear viscoelastic material functions of linear flexible polymers of uniform length are calculated from the BSW spectrum (Baumgaertel et al., 1990, 1992), and explicit analytic expressions are presented for several of the most common material functions for transient and dynamic experiments. However, numerical calculations are presented whenever needed. The BSW spectrum was determined from experimental G″, G″ data of two sets of molten polymers of narrow molecular weight distribution, polystyrene and polybutadiene. The purpose of the mapping is to show a wide range of viscoelastic behavior which otherwise is not available in such comprehensive form. Experimental check of these predictions is still needed in most cases. Also, some insight into the predictions for the non-linear (including the non-equilibrium) viscoelastic behavior is achieved by studying two particular experiments: the start-up of uniaxial extension at constant rate and the start-up of shear flow at constant rate.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Rheologica acta 36 (1997), S. 330-344 
    ISSN: 1435-1528
    Keywords: Key words Relaxation time ; spectrum ; monodisperse polymers ; hypergeometric function ; incomplete gamma function ; linear viscoelasticity ; polymer dynamics
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: Abstract The linear viscoelastic material functions of linear flexible polymers of uniform length are calculated from the BSW spectrum (Baumgaertel et al., 1990, 1992), and explicit analytic expressions are presented for several of the most common material functions for transient and dynamic experiments. However, numerical calculations are presented whenever needed. The BSW spectrum was determined from experimental G′,G″′ data of two sets of molten polymers of narrow molecular weight distribution, polystyrene and polybutadiene. The purpose of the mapping is to show a wide range of viscoelastic behavior which otherwise is not available in such comprehensive form. Experimental check of these predictions is still needed in most cases. Also, some insight into the predictions for the non-linear (including the non-equilibrium) viscoelastic behavior is achieved by studying two particular experiments: the start-up of uniaxial extension at constant rate and the start-up of shear flow at constant rate.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Stamford, Conn. [u.a.] : Wiley-Blackwell
    Polymer Engineering and Science 30 (1990), S. 408-415 
    ISSN: 0032-3888
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: A numerical method has been developed that takes the streamline finite difference method for modeling fully developed multilayer polymer flows and adds to it a simple means of accounting for nonisothermal conditions. In industrial practice, temperature control is often used to match material viscosities and, thereby, to avoid flow instabilities. By numerically calculating both viscosity ratios and normal stress difference ratios, the numerical method allows one to judge the relative stability of different flows and to choose an intelligent set of experiments when designing a coextrusion process. The algorithm has been successfully tested for a number of polymer melt constitutive equations in flows where the viscosity jumps no more than two orders of magnitude between fluids. Results for a rheologically well characterized polystyrene low-density polyethylene system and for an industrially interesting high-density polyethylene/Ultem system show that the common practice of matching zero-shear viscosities is overly simplistic when interface shear rate, conduction, normal stress, and flow rate effects are taken into account.
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Stamford, Conn. [u.a.] : Wiley-Blackwell
    Polymer Engineering and Science 32 (1992), S. 773-776 
    ISSN: 0032-3888
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: The melt rheology of phase separated blends of two thermotropic liquid crystalline polymers (LCPs) have been studied. The two components are a random copolyesters consisting of 73 mol% 4-hydrobenzoic acid (HBA) and 27 mol% 6-hydroxy-2-napthoic acid (Vectra A900 of Hoechst Celanese Corp.) and a poly(ethylene terephalate-co-4-oxybenzoate) containing 60 mol% HBA units (PET/60HBA of Eastman Kodak Corp.). Most striking is the effect of adding 10% PET/60HBA to Vectra A900: The viscosity at 290°C drops by a factor of 4 and the terminal zone of the relaxation time spectrum is shifted to much shorter times. This is an interesting effect that could be used for LCP processing even if its origin is not yet understood. Differential scanning calorimetry measurements support the hypothesis that the blend is phase separated and that no transestification reaction occurs during the experiments.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Stamford, Conn. [u.a.] : Wiley-Blackwell
    Polymer Engineering and Science 28 (1988), S. 444-452 
    ISSN: 0032-3888
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: A numerical method has been developed for simulating fully developed multilayer shear flows of non-Newtonian fluids with arbitrary viscosity functions. Poiseuille and combined Poiseuille/Couette flows in both slits arid annuli may be modeled. The method employs a finite difference system where grid points lie on streamlines and move to their correct positions as the solution procedure converges. Interfaces are easily handled as particular stream lines with the equation of motion replaced by a boundary condition. The method is stable for high interface viscosity ratios and readily handles a large number of layers. Many authors have employed power law models to model multi-layer non-Newtonian flows. We find that the power law is sufficient to predict pressure gradients and interface positions in most cases, but gives unrealistically flat velocity profiles, even when truncated at finite viscosity. Results are presented for the Carreau fluid and for the rubber-like liquid with shear thinning via Wagner's strain functional.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 0032-3888
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Shear and extensional flows can have a significant effect on the miscibility for a blend of polystyrene with poly(vinyl methyl ether). The cloud point temperature in a planar stagnation flow is elevated by as much as 12 K; the magnitude depends on the extension rate, the strain, and the blend composition. Flow-induced miscibility is also observed in the shear flow between parallel plates which has been used to test smaller samples and to prepare solid samples for further characterization. At lower temperatures, as much as 30 K below the coexistence temperature, flow-induced phase separation occurs in both shear flow and extensional flows. The stress, rather than deformation rate, appears to be the most important parameter in flow-induced phase separation.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Stamford, Conn. [u.a.] : Wiley-Blackwell
    Polymer Engineering and Science 26 (1986), S. 543-553 
    ISSN: 0032-3888
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: A systematic design of the classical “coat hanger” die is proposed and tested experimentally. The objectives of the design are 1. distribution of the polymer over the width of the die before it reaches the final lip section for thickness adjustment, 2. invariance of distribution to flow rate, 3. invariance to changes in polymer viscosity, and 4. uniform average residence time. The die design is based on a flow model which assumes power-law viscosity, steady shear flow In each cross-section, uniform temperature, and separation of the flows into a manifold component and a component in a slit section of uniform height. The design corrects for an oversimplification of the pressure gradient that was applied in previous studies; and it differs from previous designs by suggesting a rectangular cross-section for the manifold. Applications to side-fed dies for extrusion blow molding and to a sheet extrusion die achieved uniform distribution and did not require any additional flow corrections (such as choker bars or flexible lips). With the new design, the lip region of the die can freely be used for thickness control, fine tuning, or further shaping of the extrudate.
    Additional Material: 16 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...