Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • orientation  (2)
  • Chemical Engineering  (1)
  • network theory  (1)
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Rheologica acta 29 (1990), S. 175-181 
    ISSN: 1435-1528
    Keywords: Anisotropy ; thermalconductivity ; orientation ; Graetz-Nusselt problem ; polymer processing
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: Abstract To demonstrate the influence of molecular orientation on the heat conduction in a flowing polymeric liquid, we consider a variant of the Graetz-Nusselt problem. A polymeric liquid is flowing between two flat, parallel plates with a sudden change in the wall temperature. The temperature distribution in the entrance region is calculated numerically taking viscous dissipation into account. It is assumed that the material properties are independent of the temperature. It is shown that the change in the temperature distribution in the fluid caused by molecular orientation is large enough to affect polymer processing significantly.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Rheologica acta 28 (1989), S. 257-266 
    ISSN: 1435-1528
    Keywords: Thermalconductivity ; anisotropy ; network theory ; polymer ; rubber
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: Abstract A model to relate the thermal conductivity tensor to the deformation of an amorphous polymeric material above the glass transition temperature is presented. The basis of the model is formed by the transient network theory for polymer melts. With this theory it is possible to calculate the average orientation of the macromolecular segments as a function of the history of the deformation. Combined with an expression which relates the thermal conductivity to the orientation of the molecules, this provides us with the information needed to calculate the heat conduction tensor. Despite the fact that the simplest possible network model is chosen, there is good agreement with the sparse, experimental results.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Rheologica acta 29 (1990), S. 580-587 
    ISSN: 1435-1528
    Keywords: Anisotropy ; thermalconductivity ; polymerprocessing ; orientation ; viscousheating
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: Abstract In this paper a theory is presented which relates the thermal conductivity tensor of an amorphous polymeric material to the history of deformation of the material. The basis of the theory is formed by the network theory for polymeric materials. It will be shown that the results obtained here are in good agreement with experimental results on rubber. The effect of anisotropic heat conduction on the flow of a polymeric material will be demonstrated by the simple example of viscous heating in shear flow.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Stamford, Conn. [u.a.] : Wiley-Blackwell
    Polymer Engineering and Science 34 (1994), S. 1535-1546 
    ISSN: 0032-3888
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: A slit viscometer to measure the viscosity of polymer melts under processing conditions is described. Along the slit a pressure drop is generated by applying a pressure at both the entrance and the exit. In this way the pressure in the center can be controlled independently of the shear rate. The pressure gradient in the slit is measured by means of three pressure transducers which are mounted in the region of fully developed flow. Results of pressure-dependent viscosity measurements on polystyrene, polyacrylonitrile-butadiene-styrene, and polypropylene are presented in a shear rate range of five decades. The flow curves obtained at different pressures and temperatures can be shifted onto a master curve. The shear thinning behavior of the three materials is adequately described with the generalized Cross-Carreau equation, while the zero shear viscosity is modeled with a generalized Arrhenius-W.L.F. relationship, incorporating a pressure dependency. Alternatively, it is possible to describe the zero shear viscosity in terms of the free volume fraction and the temperature.
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...