Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Stamford, Conn. [u.a.] : Wiley-Blackwell
    Polymer Engineering and Science 33 (1993), S. 1352-1359 
    ISSN: 0032-3888
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Blends of ethylene methyl acrylate (EMA) and poly(dimethylsiloxane) rubber (PDMS) are demonstrated to be miscible. The miscibility results in a single and composition-dependent glass transition temperature. IR spectra of the blends provide direct evidence of chemical reaction between EMA and PDMS rubber.
    Additional Material: 12 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Stamford, Conn. [u.a.] : Wiley-Blackwell
    Polymer Engineering and Science 27 (1987), S. 1195-1202 
    ISSN: 0032-3888
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Measurement of tack of EPDM (ethylene-propylenediene terpolymer) rubber with natural rubber (NR) of four different molecular weights, styrene-butadiene rubber (SBR), butadiene rubber (BR), bromobutyl rubber (BIIR), and polychloroprene rubber (CR) was done over a range of rates of testing, contact times, and temperatures of contact. The effect of different additives, namely carbon black, phenol-formaldehyde resin, coumarone-indene resin, and methyl methacrylate is also reported. Green strength of all the rubbers was measured. Tack strength increases with increase in contact time for all the rubbers. Adhesive tack between EPDM and low-molecular-weight NR is much higher than that between EPDM and NR of high molecular weight. Tack strength of EPDM with BIIR is the highest among the tack values obtained for synthetic rubbers. The adhesive tack between EPDM and natural/ synthetic rubber passes through a maximum when plotted against temperature of contact. It increases with testing rate. All these phenomena could be explained in terms of interdiffusion of rubber chains under different conditions and solubility parameter of two contacting rubbers. It was observed that tack strength varies with (contact time)1/2 and (rate)1/2 in accordance with the reptation theory. Phenol-formaldehyde resin (PF) or coumarone-indene (CI) resin in EPDM improves the tack strength quite significantly. The resin in the NR phase does not have a marked effect. The presence of carbon black decreases adhesive tack strength between EPDM and NR. The surface of EPDM, however, becomes smoother with the addition of the additives. Peel tests and commercial tack tests give similar results in the tack strength between EPDM/NR and EPDM/SBR.
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Stamford, Conn. [u.a.] : Wiley-Blackwell
    Polymer Engineering and Science 32 (1992), S. 971-979 
    ISSN: 0032-3888
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: The effects of short carbon fibers on static and dynamic properties of thermoplastic elastomeric blends of natural rubber (NR) and high density polyethylene (HDPE) have been studied. Both mechanical and dynamic properties are dependent on fiber concentration. The fiber aspect ratio ranges from 20 to 30. Adhesion between fiber and matrix is evident from the SEM photomicrographs of the failed composites and from variation of relative damping properties. Fiber orientation occurring during processing causes anisotropy in the physical properties. In composites with longitudinally oriented fibers, tensile failure occurs by both fiber pullout and breakage, while in composites with transversely oriented fibers, matrix failure dominates. The incorporation of fibers into the matrix lowers the tan δmax value, but no change in glass transition temperature is observed.
    Additional Material: 12 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Stamford, Conn. [u.a.] : Wiley-Blackwell
    Polymer Engineering and Science 33 (1993), S. 1002-1008 
    ISSN: 0032-3888
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Rheological behavior of neoprene and acrylic rubbers and their carbon blackfilled compounds has been studied using a Monsanto Processability Tester. These systems show pseudoplastic flow behavior. Die swell increases with increase in shear rate up to a limit beyond which it decreases. It also decreases with increase in filler loading and temperature. The maximum recoverable deformation has been calculated by assuming that the viscous response of the rubbers obeys the power law model and elastic behavior is described by Hooke's law and has been correlated with die swell. A linear generalized relationship has been obtained between the die swell and the recoverable deformation. The principal normal stress difference has been found to increase nonlinearly with shear stress. Activation energy of melt flow process increases with increase in shear rate up to a limit, after which it decreases for acrylic rubber and 10 phr filled neoprene rubber.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...