Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Stamford, Conn. [u.a.] : Wiley-Blackwell
    Polymer Engineering and Science 31 (1991), S. 56-60 
    ISSN: 0032-3888
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Resin transfer molding (RTM) of advanced fiber architecture materials promises to be a cost effective process for obtaining composite parts with exceptional strength. However there are a larger number of material processing parameters that must be observed, known, and/or controlled during the resin transfer molding process. These include the viscosity both during impregnation and cure. In-situ sensors which can observe these processing properties within the RTM tool during the fabrication process are essential. This paper will discuss recent work on the use of frequency dependent electromagnetic sensing (FDMS) techniques to monitor these properties in the RTM tool. Our objective is to use these sensing techniques to address problems of RTM scaleup for large complex parts and to develop a closed loop, intelligent, sensor controlled RTM fabrication process.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    AIChE Journal 2 (1956), S. 169-173 
    ISSN: 0001-1541
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Plutonium and the fission products can be removed from irradiated uranium by liquidmetal extraction by use of another metal immiscible with uranium. Metals studied have been silver, cerium, and lanthanum. Plutonium removal by silver is high, by the rare-earth metals moderate. In all cases volatile elements, including cesium, strontium, and barium, are removed. Rare earths are efficiently removed. Ruthenium and molybdenum are largely unaffected. Experiments with synthetic fuels corresponding to long burn-up periods show improved removal of most elements. Repeated batch extractions indicate that a continuous process separating the fuel into uranium, plutonium, and fission-product fractions could be developed.
    Additional Material: 9 Tab.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...