Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Stamford, Conn. [u.a.] : Wiley-Blackwell
    Polymer Engineering and Science 22 (1982), S. 1143-1152 
    ISSN: 0032-3888
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: We review the synthesis, morphology, and physical and mechanical properties of IFNs as well as the related pseudo-IPNs, in which only one of the polymers is crossliriked. Recent studies have shown that the degree of phase separation achieved in these materials is strongly dependent on the compatibility of blends of the linear polymer constituents of the IPN components as well as the kinetics of chain extension and the presence of grafting between component polymers. We illustrate this by a series of IPNs consisting of a polyurethane and an acrylic copolymer. The acrylic is a typical automotive enamel. An enhancement in properties results, which is dependent on the amount of grafting and the kinetics of polymerization. Also discussed are IPNs of a polyurethane and an epoxy, which exhibit a synergism in adhesive properties, and IPNs of a RIM polyurethane with several epoxies and unsaturated polyesters. In addition, also reported are the preliminary studies on the first successful preparation of a three-component IPN, consisting of a polyurethane, an epoxy, and an acrylic.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Stamford, Conn. [u.a.] : Wiley-Blackwell
    Polymer Engineering and Science 25 (1985), S. 488-493 
    ISSN: 0032-3888
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Two and three component interpenetrating polymer networks (IPNs) have been prepared from polyurethanes, epoxy resins, and acrylic copolymers using the simultaneous technique (SIN). These materials exhibited a variety of morphologies and properties dependent on the types of polymer, molecular weight of precursors, presence of charge groups, and presence of intentional grafts between the component polymer networks. In general, decreasing molecular weight of prepolymers, presence of intentional grafts, and presence of charge groups of opposite charge resulted in increased homogeneity (interpenetration). In addition, increased homogeneity resulted in enhanced mechanical properties.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Stamford, Conn. [u.a.] : Wiley-Blackwell
    Polymer Engineering and Science 25 (1985), S. 758-764 
    ISSN: 0032-3888
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Recent investigations on interpenetrating polymer networks (IPNs) have included two component IPNs from polyurethanes and poly(methacrylates) and two component IPNs from polyurethanes and epoxies. All the IPNs were prepared by the simultaneous polymerization technique (SIN-IPNs). Two types of IPNs, polyurethane-poly(methyl methacrylate) (PU/PMMA) and polyurethane-poly(methyl methacrylate-methacrylic acid) (PU/PMMA-MAA) were prepared. Improved phase miscibility and decreasing extent of phase separation was observed in both types of IPNs with increasing the NCO/OH ratio, decreasing molecular weight of the polyol in the PU and introduction of charge groups. A comparison was made between full-IPNs, pseudo-IPNs, graft copolymers and related homopolymers from polyurethanes and epoxies. Increased compatibility in full-IPNs and graft copolymers was observed by means of DSC, SEM and was also further substantiated by a shift toward single Tgs as determined by dynamic mechanical spectroscopy. The introduction of opposite charge groups in two-component IPNs from polyurethanes and epoxies led to improved compatibility (no phase separation) and enhanced mechanical properties.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Stamford, Conn. [u.a.] : Wiley-Blackwell
    Polymer Engineering and Science 14 (1974), S. 76-78 
    ISSN: 0032-3888
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Interpenetrating polymer networks of the SIN type (simultaneous interpenetrating networks) composed of a polyacrylate and a polyurethane were prepared. They were made by mixing several concentrations of the linear polymer and prepolymer in solution, together with their respective chain extending and crosslinking agents and catalysts, casting films and curing them in situ. The morphology was studied by differential scanning calorimetry and electron microscopy in order to determine the extent of chain entanglement of the two networks (interpenetration). It was found that little or no phase separation occurred, thus implying extensive interpenetration.
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Stamford, Conn. [u.a.] : Wiley-Blackwell
    Polymer Engineering and Science 15 (1975), S. 339-342 
    ISSN: 0032-3888
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Two component interpenetrating polymer networks (IPN) of the SIN type (simultaneous interpenetrating networks), composed of a polystyrene network (crosslinked with divinyl benzene) and a polyester-polyurethane network (crosslinked with trimethylolpropane), were made. Electron microscopy and glass-transition measurements showed that phase separation had resulted with some interpenetration, presumably occurring at the boundaries. At a composition of about 75 percent polyurethane, a phase inversion occurred, the continuous phase being polystyrene at polyurethane compositions of less than 75 percent. The stress-strain properties and hardness measurements agreed with these results. Enhanced tensile strength was observed in the IPN's in a concentration range where modulus reinforcement was not evident. A small enhancement in tear strength and thermal stability was also noted.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Stamford, Conn. [u.a.] : Wiley-Blackwell
    Polymer Engineering and Science 19 (1979), S. 294-296 
    ISSN: 0032-3888
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: We have measured the advancing contact angles of drops of methanol-ethylene glycol mixtures on films of previously studied polyurethane-epoxy interpenetrating polymer networks. The extrapolated critical surface tensions were in excellent agreement with those obtained from advancing contact angles of drops of water-methanol mixtures. A sharp minimum is observed in the critical surface tension at network compositions where we have previously found maxima in ultimate mechanical properties. We advance a physical explanation based on unrelieved surface strains. We have also measured the toluene vapor transmission (permeability, diffusion and sorption coefficients) in these films. These results, together with the previously obtained water vapor permeabilities, are in complete accord with the expected morphologies of these networks.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Stamford, Conn. [u.a.] : Wiley-Blackwell
    Polymer Engineering and Science 14 (1974), S. 646-650 
    ISSN: 0032-3888
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Two component topologically-interpenetrating polymer networks were made of the SIN type (simultaneous interpenetrating network) composed of two polyurethanes (a polyether-based and a polyester-based) in combination with an epoxy resin, a polyacrylate and two unsaturated polyesters. The linear polymers and/or prepolymers were combined in solution and in bulk together with the necessary crosslinking agents and catalysts. Films were cast and chains extended and crosslinked in situ. All of the IPN's exhibited one glass transition (Tg) intermediate in temperature to the Tg's of the component networks, and as sharp as the Tg's of the components. This suggests that phase separation may not occur and thus some chain entanglement (interpenetration) of the two networks is involved. The observed Tg's are always several degrees lower than the arithmetic means of the component Tg's. A theory based on interpenetration is developed to account for this.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...