Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Stamford, Conn. [u.a.] : Wiley-Blackwell
    Polymer Engineering and Science 28 (1988), S. 434-443 
    ISSN: 0032-3888
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: The radial flow of a chemically reactive fluid between two parallel circular disks during the process of Reactive Injection Molding (RIM) has been simulated in a decelerative, non-isothermal, transient flow environment. The effects of key operating and system parameters (feed temperature, volumetric flow rate, reaction rate, and cavity thickness) on velocity, conversion, and temperature profiles which occur in this decelerative flow environment were determined. A catalyzed, unfilled polyurethane RIM system was modeled by a linear step polymerization scheme using average literature values for the reaction rate, and thermodynamic and constitutive parameters. The numerical solution was achieved using the method of lines and upwind approximations of the spatial derivatives. The geometry studied (two parallel, center gated circular disks) models flow patterns in commercial RIM processes more realistically than the rectangular flow between two parallel surfaces (studied by previous workers) in which the average velocity is constant along the length of the mold. This simulation predicts the accumulation of high polymer near the entrance to the mold and near the outer edge of the cavity in fast reactive systems. The accumulation of material near the gate results in viscous heat generation and a maximum in temperature in the region immediately downstream from the restriction.
    Additional Material: 21 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Stamford, Conn. [u.a.] : Wiley-Blackwell
    Polymer Engineering and Science 19 (1979), S. 414-421 
    ISSN: 0032-3888
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Data are presented for the seeded growth of polyethylene fibers from solutions undergoing laminar flow in tubular geometry. Radial growth rates are reported for solutions of high and low molecular weight fractions for the second stage fiber thickening process which occurs in the tube entrance region. Results are also shown for high molecular weight growth from fiberglass seeds which indicate an enhanced growth rate at elevated temperatures. A two-stage growth pattern documented earlier for the high molecular weight fraction is shown to occur for the lower molecular weight material. The Discussion includes an analysis for the tapered fiber geometry in the second stage of growth and calculations for stress-induced, diffusion-limited growth in the first stage downstream from the tube entrance.
    Additional Material: 14 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...