Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Electron microscopy  (4)
  • Chemical lesion  (2)
  • Macrophages  (2)
  • Microglial cells  (2)
Material
Years
Keywords
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Cell & tissue research 160 (1975), S. 139-153 
    ISSN: 1432-0878
    Keywords: Arcuate nucleus, cat ; Dense-cored vesicles ; Dopamine ; 5-Hydroxydopamine treatment ; Electron microscopy
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary The arcuate nucleus of normal cats and of cats treated with 5-hydroxydopamine (5-OHDA) was investigated by electron microscopy. The neurons of the arcuate nucleus were classified into three types, clear, intermediate and dark, according to their fine structure. The clear type contained numerous dense-cored vesicles and well developed cell organelles. All three types were frequently seen to be partially surrounded by glial processes. Many axo-somatic and axo-dendritic synapses mostly small in diameter were also observed around the neurons. Synaptic contacts were demonstrated between axon endings and axonal processes which contained elementary granules. After administration of 5-OHDA small and large dense-cored vesicles appeared in the nerve endings surrounding the neurons. The relationship between the dense-cored vesicles in the perikarya and dopamine was briefly discussed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-0878
    Keywords: Median eminence ; Rat ; Monoamine ; ZIO reaction ; Electron microscopy
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary The reaction of nerve endings in the median eminence of the rat to zinc iodide-osmium tetroxide (ZIO) staining was examined electron microscopically under normal and experimental conditions. The experimental condition of catecholamine exhaustion in the nerve endings was induced by the administration of H44/68 and reserpine. Vesicles in the terminals of catecholaminergic nerves reacted similarly to ZIO staining in both normal and experimental material. The majority of synaptic vesicles in various terminals gave a positive ZIO reaction. The neurosecretory elementary granules, however, failed to react with ZIO. On the other hand, some nerve terminals in the external layer of the median eminence showed a strong positive reaction in the cytoplasmic matrix, in mitochondria as well as in synaptic vesicles. These findings strongly suggest that the ZIO-positive substance in nerve terminals is not the transmitter itself, i.e. the monoamine, but rather represents a range of substances commonly found in various kinds of synaptic vesicles and is probably proteinaceous in nature. A brief discussion is also given on the difference in ZIO reactivity between neurosecretory elementary granules and small vesicles in the hypothalamo-hypophyseal tract.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Cell & tissue research 173 (1976), S. 261-269 
    ISSN: 1432-0878
    Keywords: Cat ; Ciliary body ; ‘False’ transmitters ; Fluorescence histochemistry ; Electron microscopy
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary The ciliary body of the cat was investigated by fluorescence histochemistry and electron microscopy in an attempt to clarify its sympathetic innervation. Subconjunctival doses of 5-hydroxydopamine (5-OHDA) or 6-hydroxydopamine (6-OHDA) were given to establish the precise location of the sympathetic nerve terminals. The distribution of noradrenergic fibers and terminals was shown by fluorescence histochemistry to be sparse in the trabecular meshwork and the anterior portion of the ciliary muscle, but dense in the subepithelial tissue. The small and large dense core vesicles which occur in many nerve endings of the subepithelial tissue adjacent to the pigmented epithelial layer increased in electron density following the administration of 5-OHDA. Many degenerating nerve endings were found in the same region of animals treated with 6-OHDA. In contrast, there were few noradrenergic terminals in the ciliary muscle except for a portion of the smooth muscle which was shown to be dually innervated. The noradrenergic fibers in the subepithelial region and the trabecular meshwork may play an important role in aqueous secretion and outflow.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Cell & tissue research 216 (1981), S. 557-568 
    ISSN: 1432-0878
    Keywords: Electron microscopy ; Neuroglia ; Silver impregnation ; Brain ; Cat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary The silver-impregnation procedure of Tsujiyama is suitable for demonstration of all three classical types of neuroglial cells; in the present study it was used for electron microscopic identification of neuroglial cells in the brain of the cat. The aim of the present study was 1) to determine impregnated structural correlates of neuroglial cells at the light- and electron-microscopic levels, and 2) to determine whether the method of Tsujiyama is applicable for the electron microscopic identification of the single types of neuroglial cells. Silver deposits were observed over the cytoplasm and processes of astrocytes where numerous glial filaments were present. Oligodendrocytes and microglial cells may be precisely differentiated by use of Tsujiyama's silver impregnation method at the electron microscopic level due to the pattern of silver-deposition in these two basic types of cells. This silver-impregnation method combined with electron microscopy is thus suitable for a precise identification of neuroglial cells; the technique may prove to be very helpful in identification of such categories of neuroglial cells that encompass also the images of cells which cannot be classified by use of the standard methods.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Cell & tissue research 216 (1981), S. 569-580 
    ISSN: 1432-0878
    Keywords: Glial response ; Chemical lesion ; Kainic acid ; Hippocampus ; Rat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary The cellular response of non-neuronal elements of the pyramidal cell layer of the rat hippocampus, especially the area CA 3, was observed electron microscopically following destruction of this formation by means of intraventricular administration of kainic acid (KA). The neuroglial cell types responding to the KA-induced lesion included astrocytes and the “microglia-like reactive cells”. In addition, numerous brain macrophages appeared in the damaged area CA 3. Oligodendrocytes and pericytes revealed no morphological changes. Swollen astrocytes were seen in the KA-induced lesion during the early stage. Glial filaments gradually developed in the soma and cell processes of these cells. Brain macrophages were seen in the KA-induced lesion during the early stage; they gradually decreased in number with time. Numerous small cells displaying a dark nucleus appeared in the damaged area CA 3 during the first two days after the KA-administration, and gradually increased in number. During the later stage this cell type could hardly be distinguished from the intrinsic microglial cells. It is open to discussion whether this cell type originates from the intrinsic microglial cells or from the hematogenic monocytes; therefore it is designated as “microglia-like reactive cell” in the present study.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Cell & tissue research 225 (1982), S. 469-485 
    ISSN: 1432-0878
    Keywords: Microglial cells ; Postnatal development ; Enzyme histochemistry ; NDPase, TPPase ; Rat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary The postnatal development of microglial cells was investigated in the neonatal rat brain by use of light- and electron microscopy, including enzyme-histochemical techniques. Microglial cells were selectively stained by demonstration of their nucleoside diphosphatase (NDPase) activity and classified into three types: 1) In the early postnatal period, “primitive microglial cells” showing scantily ramified processes were found in the cerebral cortex, the hippocampal formation, and the hypothalamus. During the course of the first postnatal week the processes of this cell type developed gradually and the cells were transformed into typical ramified microglial cells, called “resting microglial cells”. 2) “Amoeboid microglial cells” showing typical features of macrophages were characteristic of the cerebral white matter. 3) “Round microglial cells” possessing a round soma and few pseudopodia but no characteristic processes occurred in large numbers in the sub ventricular zone of the lateral ventricle and as single elements in the vicinity of blood vessels. Histochemically, thiamine pyrophosphatase (TPPase) was demonstrated only in the fully developed, ramified microglial cells (“resting microglial cells”), which could be readily observed in the central nervous tissue from the age of 14 day. “Round and amoeboid microglial cells” did not show TPPase activity and disappeared after 14 days of postnatal life. By use of electron microscopy, in neonatal rats NDPase activity was apparent in the plasma membrane of the three types of microglial cells (“primitive, round, and amoeboid” types). They showed basically similar submicroscopic characteristics, i.e., well-developed Golgi apparatus, long strands of roughsurfaced endoplasmic reticulum, single dense bodies and vacuoles, and numerous ribosomes. “Amoeboid microglial cells” were characterized by their well-developed cytoplasmic vacuoles and phagocytic inclusion bodies. The present study strongly suggests a mesodermal origin for these microglial elements.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Cell & tissue research 206 (1980), S. 171-180 
    ISSN: 1432-0878
    Keywords: Pituitary gland ; Reticuloendothelial system ; Macrophages ; Horseradish peroxidase
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary Following injection of high doses of horseradish peroxidase (HRP), mesenchymal cells distributed in the perisinusoidal space of the pars tuberalis of the hypophysis in cats, rabbits and Japanese quails, sequester the exogenously administrated peroxidase intensively. These cells are designated by the authors as “horseradish peroxidase-uptake cells” (HRP-uptake cells or HUC). HRP-uptake cells constitute a system of macrophages in the pars tuberalis of mammals and birds, and are located around the hypophysial portal veins. HRP-uptake cells differ in morphological and functional characteristics from similar cells in other parts of hypophysis. They are thought to play a role in the hypothalamic control of adenohypophysial secretion.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Springer
    Cell & tissue research 223 (1982), S. 493-506 
    ISSN: 1432-0878
    Keywords: Microglial cells ; TPPase ; NDPase ; Synapse ; Rat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary Electron-microscopic survey of selectively stained microglial cells in the cerebral cortex of the rat reveals that the processes of this cell type often encircle axo-dendritic synapses. Enzyme-histochemical methods for thiamine pyrophosphatase (TPPase) or nucleoside diphosphatase (NDPase) were used for the selective marking of the microglial cells; TPPase and NDPase activities were observed in the plasma membrane of microglial cells. The synapses encircled by microglial processes displayed presynaptic structures containing round clear vesicles (50 nm in diameter) and a prominent thickening of the postsynaptic membrane. In vitro, the above-mentioned enzymatic activities were completely suppressed by neuroactive agents such as catecholamines and phenothiazine derivatives. Examination using enzyme-histochemical techniques suggests that a single enzyme may be responsible for both above-mentioned enzymatic reactions. The functional significance of microglial cells in the normal central nervous tissue is discussed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Springer
    Cell & tissue research 218 (1981), S. 75-86 
    ISSN: 1432-0878
    Keywords: Microglia ; Macrophages ; Chemical lesion ; Kainic acid ; Hippocampus ; Rat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary Light-and electron-microscopic investigations of kainic acid-induced lesions revealed a marked macrophage response and “microgliocytosis”. The hematogenous origin of reactive elements, such as brain macrophages and “microglia-like reactive cells”, was demonstrated when blood phagocytes were labeled with carbon particles or horseradish peroxidase prior to induction of the kainic acid-lesion. The induced lesion showed a proliferation of microglial cells, which led to a state of “microgliocytosis” in the later stage of lesioning. Since it is now generally accepted that microglial cells in the state of “microgliocytosis” are derived from the “microglia-like reactive cells”, proliferated microglial cells in the brain lesions are probably of hematogenous origin. The relationships among the brain macrophages, the “microglia-like reactive cells” and the intrinsic microglial cells are discussed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...