Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Entomologia experimentalis et applicata 94 (2000), S. 283-293 
    ISSN: 1570-7458
    Keywords: Japanese beetle ; northern masked chafer ; Cyclocephala hirta ; Steinernema ; Heterorhabditis ; integrated pest management ; host attachment ; behavior ; defense
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Entomopathogenic nematodes and the chloronicotinyl insecticide, imidacloprid, interact synergistically on the mortality of third-instar white grubs (Coleoptera: Scarabaeidae). The degree of interaction, however, varies with nematode species, being synergistic for Steinernema glaseri (Steiner) and Heterorhabditis bacteriophora Poinar, but only additive for Steinernema kushidai Mamiya. The mechanism of the interaction between imidacloprid and these three entomopathogenic nematodes was studied in the laboratory. In vials with soil and grass, mortality, speed of kill, and nematode establishment were negatively affected by imidacloprid with S. kushidai but positively affected with S. glaseri and H. bacteriophora. In all other experiments, imidacloprid had a similar effect for all three nematode species on various factors important for the successful nematode infection in white grubs. Nematode attraction to grubs was not affected by imidacloprid treatment of the grubs. Establishment of intra-hemocoelically injected nematodes was always higher in imidacloprid-treated grubs but the differences were small and in most cases not significant. The major factor responsible for synergistic interactions between imidacloprid and entomopathogenic nematodes appears to be the general disruption of normal nerve function due to imidacloprid resulting in drastically reduced activity of the grubs. This sluggishness facilitates host attachment of infective juvenile nematodes. Grooming and evasive behavior in response to nematode attack was also reduced in imidacloprid-treated grubs. The degree to which different white grub species responded to entomopathogenic nematode attack varied considerably. Untreated Popillia japonica Newman (Coleoptera: Scarabaeidae) grubs were the most responsive to nematode attack among the species tested. Untreated Cyclocephala borealis Arrow (Coleoptera: Scarabaeidae) grubs showed a weaker grooming and no evasion response, and untreated C. hirta LeConte (Coleoptera: Scarabaeidae) grubs showed no significant response. Chewing/biting behavior was significantly increased in the presence of nematodes in untreated P. japonica and C. borealis but not in C. hirta and imidacloprid-treated P. japonica and C. borealis. Our observations, however, did not provide an explanation for the lack of synergism between imidacloprid and S. kushidai.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Weinheim : Wiley-Blackwell
    Journal of High Resolution Chromatography 11 (1988), S. 322-327 
    ISSN: 0935-6304
    Keywords: Preparative capillary GC ; Multidimensional GC ; Capillary techniques ; Enrichment ; Trace analysis ; Thermal desorption ; Chemistry ; Analytical Chemistry and Spectroscopy
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: An automated system for preparative gas chromatography with capillary columns is described. The effluet from the capillary column is switched to the FID detector or to the traps by means of a Live-T switching device. The pneumatics is controlled by a microprocessor so that repetitive sampling can be performed over a period of days in order to enrich sufficient amount of material for NMR or other spectroscopic methods. The effluent containing the compounds is collected in glass tubes filled with column packing material (e.g. Chromosorb coated with 3% OV - 101, crosslinked). The trap temperatue can be adjusted from + 20°C to - 80°C, depending on the trapping material and volatility of trapped substances. The analysis of enriched substances or chromatographic fractions can be performed by thermal desorption of the same traps or by solven elution. The recovery of enriched substances is higher than 90%. High capacity and resolution for enrichment of trace components are obtained with the aid of a double column-double oven system. Examples of such applications are given.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Journal für Praktische Chemie/Chemiker-Zeitung 340 (1998), S. 683-685 
    ISSN: 0941-1216
    Keywords: Chemistry ; Organic Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Additional Material: 3 Tab.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 0173-0835
    Keywords: Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: A procedure for the quantification of double-strand breaks in yeast is presented that utilizes pulsed field gel electrophoresis (PFGE) and a comparison of the observed DNA mass distribution in the gel lanes with calculated distributions. Calculation of profiles is performed as follows. If double-strand breaks are produced by sparsely ionizing radiation, one can assume that they are distributed randomly in the genome, and the resulting DNA mass distribution in molecular length can be predicted by means of a random breakage model. The input data for the computation of molecular length profiles are the breakage frequency per unit length, α, as adjustable parameter, and the molecular lengths of the intact chromosomes. The obtained DNA mass distributions in molecular length must then be transformed into distributions of DNA mass in migration distance. This requires a calibration of molecular length vs. migration distance that is specific for the gel lane in question. The computed profiles are then folded with a Lorentz distribution with adjusted spread parameter Γ to account for and broadening. The DNA profiles are calculated for different breakage frequencies α and for different values of Γ, and the parameters resulting in the best fit of the calculated to the observed profile are determined.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...