Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-2234
    Keywords: Key words: Solvation ; Electrostatics ; Generalised Born theory ; Salt effects ; Continuum solvent
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract. The Poisson–Boltzmann (PB) continuum solvent model shows considerable promise in providing a description of electrostatic solvation effects in biomolecules, but it can be computationally expensive to obtain converged results for large systems. Here we examine the performance of a pairwise generalized Born approximation (GB) method on multiple conformations of a small peptide, three proteins (protein A, myoglobin, and rusticyanin) and four RNA and DNA duplexes and hairpins containing 20–24 nucleotides. Charge and dielectric radii models were adapted from the CHARMM and Amber force fields. Finite difference PB calculations were carried out with the Delphi and PEP programs, and for several examples the matrix of all pairwise interaction energies was determined. In general, this parameterization of the GB model does an excellent job of reproducing the PB solvation energies for small molecules and for groups near the surface of larger molecules. There is a systematic tendency for this GB model to overestimate the effects of solvent screening (compared to PB) for pairs of buried atoms, but individual errors tend to cancel, and a good overall account of conformational energetics is obtained. A simple extension to the GB model to account for salt effects (in the linearized Debye–Hückel approximation) is proposed that does a good job of reproducing the salt dependence of the PB calculations. In many cases, it should be possible to replace PB calculations with much simpler GB models, but care needs to be taken for systems with extensive burial of charges or dipoles.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Biopolymers 33 (1993), S. 1567-1580 
    ISSN: 0006-3525
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: We have carried out a nanosecond molecular dynamics simulation of an analogue of the ribonuclease C-peptide in water. The overall conformation has an extended region for the first three amino acids connected to an α-helix for residues 4-13, and this basic structure is preserved throughout the simulation, with helical hydrogen bonds present 87% of the time, on average. The final helical hydrogen bond is spontaneously broken and re-formed several times, providing a detailed picture of such winding/unwinding events. The simulation was used to estimate the effects of internal motion on proton nuclear Overhauser effect spectroscopy (NOESY) intensities for several classes of important cross peaks. Within the helical regions, the effects of internal motion vary only a little from one residue to another for backbone-backbone cross peaks, and the relevant correlation functions reach plateau values within about 50 ps. The spectral simulations show, however, that it may be difficult to establish a close quantitative connection between NOESY cross-peak volumes and measures of helical content. © 1993 John Wiley & Sons, Inc.
    Additional Material: 15 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 31 (1998), S. 258-270 
    ISSN: 0887-3585
    Keywords: IIAglc ; NMR ; protein phosphorylation ; PTS ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: The high-resolution solution structure of the phosphocarrier protein IIAglc from Bacillus subtilis is determined using 3D and 4D heteronuclear NMR methods. B. subtilis IIAglc contains 162 amino acid residues and is one of the larger proteins for which high-resolution solution structure has been determined by NMR methods. The structures have been calculated from a total of 2,232 conformational constraints. Comparison with the X-ray crystal structure indicates that the overall fold is the same in solution and in crystalline environments, although some local structural differences are observed. These occur largely in turns and loops, and mostly correspond to regions with high-temperature factors in the crystal structure. The N-terminus of IIAglc is disordered in solution. The active site is located in a concave region of the protein surface. The histidine, which accepts the phosphoryl group (His 83), interacts with a neighboring histidine (His 68) and is surrounded by hydrophobic residues. Proteins 31:258-270, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Biopolymers 28 (1989), S. 851-871 
    ISSN: 0006-3525
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Vibrational normal mode calculations are presented for a DNA hexanucleoside pentaphosphate, d(CpGpCpGpCpG)2, and for its complex with the cationic interclator ethidium. Two intercalation sites are modeled that differ in DNA backbone torsion angles. Normal mode frequencies for the DNA fragment itself are significantly lower than those reported earlier using different force fields, but an analysis of “effective” frequencies suggests that somewhat higher frequencies are more appropriate. Intercalation leads to significant lowering of mobility for the base pairs adjacent to the drug; in this sequence, the ethidium binding affects the guanosine atoms more strongly than the cytosine atoms. Motions of the bases and the intercalator are analyzed in terms of “twist” about the local helix axis and a “tilt” angle relative to this axis, and the results are compared to fluorescence studies of ethidium-DNA complexes.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Biopolymers 31 (1991), S. 1351-1361 
    ISSN: 0006-3525
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: We describe a 1 ns molecular dynamics simulation of an 18-residue peptide (corresponding to a portion pf the H helix of myoglobin) in water. The initial helical conformation progressively frays to a more disordered structure, with the loss of internal secondary structure generally proceeding from the C-terminus toward the N-terminus. Although a variety of mechanisms are involved in the breaking of helical hydrogen bonds, the formation of transient turn structures, with i → i + 3 hydrogen bonds, and bifurcated hydrogen-bond structures intermediate between α and turn or 310 structures is a common motif. In some cases a single water molecule is inserted into an internal hydrogen bond, but it is also common to have several water molecules involved in transient intermediates. Overall, the results provide new information about the detailed mechanisms by which helices are made and broken in aqueous solution.
    Additional Material: 12 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...