Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Journal of molecular medicine 67 (1989), S. 126-130 
    ISSN: 1432-1440
    Keywords: Phospholipase A1 ; Liver ; Lysosomes ; Golgi system ; Lipidosis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Acid phospholipase A1 activity in liver (rat, human) is predominantly localized in lysosomes. A minor proportion (less than 3% of the total activity) is also present in the Golgi apparatus and the endoplasmic reticulum, presumably due to enzymatically active precursors of the corresponding lysosomal enzyme. Lysosomal phospholipase A1 is the most important enzyme initiating the intralysosomal catabolism of diacylphosphoglycerides. It has been purified 50,600-fold, with a yield of about 26%. The enzyme prefers phosphatidylethanolamine as a substrate, which at 200 µM and pH 4.5, is hydrolysed at a rate of approximately 8.2 U/mg. Lysosomal phospholipase A1 is a glycoprotein of about 29 kDa with an isoelectric point of pH 5.3. Unspecific extralysosomal endogenous inhibitors of this enzyme are pH range, inorganic cations, and various proteins. Divalent cations are more potent inhibitors than monovalent ones. Most endogenous intra- and extracellular proteins inhibit the enzyme, the cationic species exhibiting high inhibitory potencies, glycoproteins only little. Inhibitory proteins act through their binding to the substrate. Lysosomal phospholipase A1 seems to be an important target in drug-induced lipidosis. This lipid storage disease is caused by various cationic amphiphilic drugs that are trapped intralysosomally by protonation. In lysosomes such compounds raise the pH, interact with the polar lipids to be degraded and the lysosomal lipolytic enzymes, such as phospholipase A1. These mechanisms result in impaired intralysosomal phospholipid degradation and hence in intralysosomal phospholipid accumulation.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Applied Polymer Science 1 (1959), S. 43-49 
    ISSN: 0021-8995
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Common secondary aromatic amine and alkylated phenolic antioxidants lose much of their activity in polyethylene containing carbon black. In contrast their thioether derivatives provide more protection against oxidation than the sum of the separate contributions of carbon black and the sulfur compounds. Organic disulfides and some thio-ethers without amino or phenolic hydrogen also safeguard polyethylene from oxidation but only in the presence of carbon black. Likewise thiols are excellent protectants in combination with carbon black but not in clear polymer. Aliphatic thiols, disulfides, and their polymeric derivatives and related selenium compounds exhibit similar activity.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    Journal of Polymer Science 28 (1958), S. 439-442 
    ISSN: 0022-3832
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...