Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1573-2592
    Keywords: Complement ; cryoproteins ; IgG ; anaphylatoxins ; C1 inhibitor
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Cold-dependent activation of complement (CDAC) is a phenomenon characterized by low hemolytic complement activity in chilled serum. Complement component levels are normal when measured immunologically, and there is normal hemolytic activity in EDTA plasma or serum maintained at 37°C. Little attention has been paid to CDAC except in Japan, and current unfamiliarity with it, even by clinical immunologists, can lead to confusion and unnecessary laboratory tests. A 66-year-old patient with a complex medical history is described whose complement tests showed abnormalities characteristic of CDAC. Evidence for classical complement pathway activation in the cold was obtained by CH50 measurements, by hemolytic C4 determinations, by C4a, C3a, and C4d generation, and by quantitating $$C1\mathop s\limits^\_ - C1\mathop r\limits^\_ - (C1 inhibitor)_2 $$ complexes. A good correlation was observed among these parameters. Cryoprecipitates were absent. CDAC activity has persisted for over 5 years and is greater at 13 than at 4°C. Activation is ablated by heating at 56°C and restored by the addition of C1 to the heated serum. Adsorption by streptococcal protein G-Sepharose and precipitation by 2.5% polyethylene glycol support the hypothesis that CDAC is caused by aggregated IgG. The CDAC factor(s) also induces complement activation in normal serum but has not interfered with Raji cell or C1q binding tests or with FACS analysis. More limited studies of a second individual experiencing CDAC yielded similar results.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 0006-3525
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Synthetic analogues of the C-terminal portion of C5a were designed and found to be agonists of the C5a receptor [J. A. Ember et al. (1992) Journal of Immunology, Vol. 148, p. 3165]. Nuclear magnetic resonance experiments were carried out to determine the solution conformation of the most potent analogue, the peptide C5a 65-74 (Tyr65, Phe67) (Tyr65-Ser66-Phe67-Lys68-Asp69-Met70-Gln71-Leu72-Gly73-Arg74). Medium-range nuclear Overhauser effects (NOEs) were observed for residues 65-70 of this C5a peptide, suggesting that this region adopts a folded conformation in a significant population of the solution conformational ensemble. Quantitative analyses of 3JNH-aH coupling constants and sequential NOE cross peaks gave an estimated helical population of 65% in the region Ser66-Met70. Additional evidence supporting the presence of a helical turn includes reduced amide-proton temperature coefficients and lowered3JHN-aH coupling constants in the region of Phe67-Met70. Conformational behavior of this C5a analogue peptide was studied using molecular modeling incorporating observed NOEs as constraints. The side chains of Tyr65, Phe67, and Met70 consistently form a hydrophobic cluster in all the model structures. The side chains of residues Ser66 and Asp69 can form reciprocal hydrogen bonds with the backbone NH groups of these two residues, indicating that residues Ser66-Phe67-Lys68-Asp69 (or SFKD) form a helix-stablizing capping box [E. T. Harper and G. D. Rose (1993) Biochemistry, Vol. 32, p. 7605: H. X. Zhou et al. (1994) Proteins: Structure, Function and Genetics, Vol. 18. p. 1] even within the single turn of helical structure found in the analogue C5a peptide. A comparison of the nmr results obtained for the analogue peptide and the natural decapeptide C5a 65-74 (He65-Ser66-His67-Lys68-Asp69-Met70-Gln71-Leu72-Gly73-Arg74) indicated that incorporation of residues Tyr65 and Phe67 helps stabilize an isolated capping box involving residues Ser66-Asp69 in the C5a peptides through more extensive hydrophobic/aromatic interactions between residues Tyr65, Phe67, and Met70 in the analogue peptide C5a 65-74 (Tyr65, Phe67). These results constitute the first experimental demonstration of hydrophobic determinants in helical capping-box interactions, proposed recently by a statistical analysis of protein structures [J. W. Seale et al. (1994) Protein Science, Vol. 3. pp. 1741-1745]. The stabilized helical turn may also account for the greater potency of the analogue peptide C5a65-74(Tyr65, Phe67) in receptor-binding assays. © 1996 John Wiley & Sons, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...