Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Developmental Dynamics 203 (1995), S. 477-490 
    ISSN: 1058-8388
    Keywords: Thrombospondin ; Development ; Extracellular matrix ; In situ hybridization ; Chondrogenesis ; Osteogenesis ; Cornea ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: The thrombospondins are a family of related glycoproteins found in the embryonic extracellular matrix. To date, five members of this family have been identified. Thrombospondin-1 and thrombospondin-2 have similar primary structure, but are expressed in different tissues at different times during development. Thrombospondins-3, -4, and cartilage oligomeric protein belong to a second thrombospondin subgroup in which the carboxyl-half of each molecule is most similar to thrombospondin-1 and -2. Here, we report the cloning and sequencing of a novel probe to avian thrombospondin-4. We have used this probe to determine the origins of thrombospondin-4 in the chick embryo by in situ hybridization. Thrombospondin-4 transcripts first appear in the mesenchyme surrounding bone anlage coinciding with the initial stages of osteogenesis. The expression in osteogenic tissues is transient: thrombospondin-4 mRNAs are not seen in the osteoblasts of bone collars in developing long bones. This pattern is distinct from avian thrombospondin-2, which is expressed in perichondrium and embryonic fibrous connective tissues. Our observations indicate that connective tissues are the principal site of thrombospondin-4 expression in the chick. The diverse origins of different thrombospondin gene family members imply distinctive roles for these proteins related to the growth and differentiation of cartilage, tendons, and bone. ©1995 Wiley-Liss, Inc.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 0263-6484
    Keywords: thrombospondin ; CD36, cell adhesion ; cell migration ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: In this study, we examined the binding of soluble TSP1 (and ox-LDL) to CD36-transfected cells and the mechanisms by which immobilized TSP1 mediated attachment and haptotaxis (cell migration towards a substratum-bound ligand) of these transfected cells. CD36 cDNA transfection of NIH 3T3 cells clearly induced a dramatic increase in binding of both soluble [125I]-TSP1 and [125I]-ox-LDL to the surface of CD36-transfected cells, indicating that there was a gain of function with CD36 transfection in NIH 3T3 cells. Despite this gain of function, mock- and CD36-transfected NIH 3T3 cells attached and migrated to a similar extent on immobilized TSP1. An anti-TSP1 oligoclonal antibody inhibited CD36-transfected cell attachment to TSP1 while function blocking anti-CD36 antibodies, alone or in combination with heparin, did not. A series of fusion proteins encompassing cell-recognition domains of TSP1 was then used to delineate mechanisms by which NIH 3T3 cells adhere to TSP1. Although CD36 binds soluble TSP1 through a CSVTCG sequence located within type 1 repeats,18,19 CD36-transfected NIH 3T3 cells did not attach to immobilized type 1 repeats while they did adhere to the N-terminal, type 3 repeats (in an RGD-dependent manner) and the C-terminal domain of TSP1. Conversely, Bowes melanoma cells attached to type 1 repeats and the N- and C-terminal domains of TSP1. However, CD36 cDNA transfection of Bowes cells did not increase cell attachment to type 1 repeats compared to that observed with mock-transfected Bowes cells. Moreover, a function blocking anti-CSVTCG peptide antibody did not inhibit the attachment of mock- and CD36-transfected Bowes cells to type 1 repeats. It is suggested that CD36/TSP1 interaction does not occur upon cell-matrix adhesion and haptotaxis because TSP1 undergoes conformational changes that do not allow the exposure of the CD36 binding site. © 1998 John Wiley & Sons, Ltd.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...