Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Chemistry  (1)
  • Key words Brassica campestris . cDNA cloning . Floral transition . Shoot apex . Vernalization  (1)
  • 1
    ISSN: 1432-2145
    Keywords: Key words Brassica campestris . cDNA cloning . Floral transition . Shoot apex . Vernalization
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract  The vegetative-to-floral transition of Brassica campestris cv. Osome was induced by vernalization. Poly(A)+RNA was isolated from the transition shoot apex after 6 weeks of vernalization, the floral apex after 12 weeks of vernalization and the expanded leaves just before vernalization, and cDNAs were synthesized. These cDNAs were used for subtraction and differential screening to select cDNA preferentially present in the transition and floral apices. Nucleotide sequences of the resulting 14 cDNA clones were determined, and northern blot analysis was carried out on six cDNAs. Two cDNA clones which did not show significant similarity to known genes were shown to be preferentially expressed in the floral apex.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    International Journal of Chemical Kinetics 4 (1972), S. 229-233 
    ISSN: 0538-8066
    Keywords: Chemistry ; Physical Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The thermal decomposition of 3-chloro-3-trichloromethyldizairine in carbon tetrachloride and iso-octane has been investigated over the temperature range 75-115°C. The products, tetrachloroethylene and nitrogen, are formed quantitatively by a first-order reaction which is probably unimolecular: The results yielded the following Arrhenius equations: \documentclass{article}\pagestyle{empty}\begin{document}$$\begin{array}{l} k({\rm CCl}_{\rm 4} {\rm)} = {\rm 10}^{{\rm 13}{\rm .8} \pm {\rm 0}{\rm .2}} \exp (- 29,200 \pm 200/RT)\sec ^{ - 1} \\ k(iso - {\rm octane)} = {\rm 10}^{{\rm 13}{\rm .8} \pm {\rm 0}{\rm .2}} \exp (- 29,000 \pm 150/RT)\sec ^{ - 1} \\ \end{array}$$\end{document}.
    Additional Material: 2 Tab.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...