Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Cell & tissue research 209 (1980), S. 485-498 
    ISSN: 1432-0878
    Keywords: Lung, Bufo marinus ; Neuroepithelial bodies ; Apical cell
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary The cytological features and membrane specialisations of neuroepithelial cells (apical cells) in direct contact with the lumen of the lung were studied with transmission and scanning electron microscopy. The luminal surface of the apical cell is characterised by microvilli, a cilium with an 8+1 microtubular pattern and numerous coated vesicles. The cytoplasmic region immediately beneath the luminal plasma membrane contains numerous smooth-walled vesicles, tubules and microtubules, a few microfilaments and dense granules (15–20 nm in diameter). The luminal pole of the cell is marked off from the basal or vascular pole by a well-defined terminal web associated with junctional complexes. Protrusion of the luminal pole occurs as a transient phenomenon and is accompanied by a pinching in of the cell at the terminal web. It is proposed that the distinctive features of the luminal pole of the apical cell are comparable to those of recognised chemoreceptor cells. It is also proposed that in view of the common features of apical and basal cells the apical cell functions as a receptor/transducer and the basal cells serve as an accessory source of peptides/5-hydroxytryptamine to be released on stimulation of the apical cell. Furthermore, we have drawn attention to the structural heterogeneity of the neuroepithelial bodies in various vertebrate classes.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Cell & tissue research 195 (1978), S. 395-410 
    ISSN: 1432-0878
    Keywords: Lung, Bufo marinus ; Adrenergic innervation ; Neuroepithelial bodies ; Receptors
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary Neuroepithelial bodies (NEB) were identified in the lung of Bufo marinus. The characteristics of the cells and their innervation were studied with electron and fluorescence microscopy before and after close vagosympathetic denervation. The bodies consist of low columnar cells which rest on the epithelial basal lamina. The majority of the cells do not reach the lumen of the lung (basal cells); the few which do (apical cells) are bordered by microvilli and possess a single cilium. The neuroepithelial cell cytoplasm contains a variety of organelles the most characteristic of which are dense cored vesicles. Microspectrofluorometry and electron microscopic cytochemistry indicate significant quantities of 5-hydroxytryptamine in these cells. The neuroepithelial bodies could be divided into three groups on the basis of their innervation: 1) About 60% of the NEBs are innervated solely by nerve fibres containing agranular vesicles which form reciprocal synapses; 2) about 20% are innervated solely by adrenergic nerve fibres which form distinct synaptic contacts; and 3) the remaining 20% are innervated by both types of nerve fibres. It is proposed that the NEBs are receptors monitoring intrapulmonary PCO 2 and so leading to modulation of activity in afferent nerve fibres (type containing agranular vesicles). The presence of NEBs solely with an adrenergic (efferent) innervation poses a problem with this interpretation.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 0030-493X
    Keywords: Chemistry ; Analytical Chemistry and Spectroscopy
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 0538-8066
    Keywords: Chemistry ; Physical Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Part I: Kinetic data for the static system silane pyrolysis (from 640-703 K, 60-400 torr) are presented. For conversion from 3-30%, first-order kinetics are obtained, with silane loss rates equal to half the hydrogen formation rates. At conversions greater than 40%, rate inhibition attributable to the back reaction of hydrogen with silylene occurs. Overall reaction rates are not surface sensitive, but disilane and trisilane yield maxima under some conditions are. A nonchain mechanism capable of describing quantitatively all stages of the silane pyrolysis is proposed. Post 1.0% initiation is both homogeneous (gas phase) and heterogeneous (on the walls), and reaction intermediates are silylenes and disilenes. Free radicals are not involved at any stage of the reaction. Rate data at high conversions and with added hydrogen provide kinetics for the addition of silylene to hydrogen [reaction (-1)1] relative to its addition to silane [reaction (2)]: k-1,/k2 = 10-0.65 × e-3200 cal/RT. With E2 = 1300 cal, this gives a high pressure activation energy for silylene insertion into hydrogen of E-1 = 8200 cal.Part II: An analysis is made of each rate constant of the silane mechanism and the modeling results are compared with experimental results. Agreement is excellent. It is concluded that the dominant sink reaction for silylene intermediates is 1,2 - H2 elimination from disilane (followed by Si2H4 polymerization and wall deposition). The model is in accord with slow isomerization between disilene and silylsilylene and near exclusive 1,2 - H2 elimination from Si2H6. It is also concluded that disilene is about 10 kcal/mol more stable than silylsilylene and that the activation energy for isomerization of silylsilylene to disilene is greater than 26 kcal/mol.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...