Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-2048
    Keywords: Chloroplast (glucan synthese) ; Enzyme (multiple forms) ; Glucan synthase (intracellular location) Spinacia (glucan synthese) ; Starch synthase
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Buffer-extractable proteins from leaves of Spinacia oleracea L. were separated by non-denaturing polyacrylamide gel electrophoresis. Gels were stained for adenosine diphosphoglucose (ADPglucose)-dependent glucan-synthase (GS) activity (EC 2.4.1.21). Three major forms of activity were observed. No staining was detectable when ADPglucose was replaced by an equimolar concentration of either uridine, guanosine or cytosine diphosphoglucose. Two of the three GS forms exhibited both primed and citrate-stimulated unprimed activity whereas one enzyme form was strictly dependent upon the presence of an exogenous glucan. For intracellular localization, mesophyll protoplasts and intact chloroplasts were isolated and their enzyme pattern was compared with that of the leaf extract. Intactness and purity of the chloroplast preparations were ascertained by polarographic measurement of the ferricyanide- or CO2-dependent oxygen evolution, by determination of marker-enzyme activities, and by electrophoretic evaluation of the content of chloroplast- and cytosol-specific glucanphosphorylase forms (EC 2.4.1.1). The three GS forms were present in mesophyll protoplasts. Intact chloroplasts possessed both primer-independent enzyme forms but lacked the primer-dependent one. The latter form was enriched in supernatant fractions of leaf homogenates when the intact chloroplasts had been pelleted by centrifugation. Thus, in spinach-leaf mesophyll cells soluble ADPglucose-dependent GS is located both inside and outside the chloroplast.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    AIChE Journal 42 (1996), S. 1590-1599 
    ISSN: 0001-1541
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Cohesive (Group C) particles have been widely used in various industries. To handle and process such fine particles, a clear understanding of the flow behavior and interparticle force, is needed. To achieve that objective, a Laser Doppler Anemometer system was used to measure particle velocity, fluctuating velocity, and size and extent of agglomeration or cluster formation of particles in a dilute gas/fine oil shale particle flow system with particle density of 2,082 kg/m3, average particle volumetric concentration of 1.5%, and average particle mass flux of about 100 kg/m2·s in a controlled-moisture environment. The flow behavior of the particles was also studied for a mixture of 99% shale particles and 1% antistatic agent (Larostat powder, a quaternary ammonium compound) to examine the role of electrostatic force in gas/cohesive particle flow behavior. The addition of Larostat powder significantly reduced the electrostatic force and, in turn, made Group C particles behave similar to Group A or in some cases to Group B particles. In addition, our experimental data showed that the Maxwellian distribution function is a reasonable assumption to describe the velocity probability density function of the shale particles with or without antistatic agents.
    Additional Material: 14 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...