Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1573-904X
    Keywords: drug absorption ; food effects ; site-specific absorption ; regional-dependent absorption ; intestinal clearance ; viscosity ; bidisomide ; disopyramide ; canine model
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract Purpose. The aim of this research was to determine the mechanism by which a co-administered meal decreases the oral absorption of bidisomide and does not influence the oral absorption of the chemically-related antiarrhythmic agent, disopyramide. Methods. Bidisomide plasma levels, following oral administration and intravenous infusion in the fasted state and with various meal treatments, were determined in human subjects. A dialysis technique was employed to examine the potential for drug binding to meal homogenates. Plasma levels, following drug administration through duodenal and jejunal intestinal access ports and following various meal treatments with oral drug co-administration, were compared for bidisomide and disopyramide in a canine model. Results. Bidisomide plasma AUC was significantly reduced following oral drug co-administration with breakfast compared to fasted-state controls in human subjects and in dogs independent of the composition of the solid cooked breakfast. While intravenous bidisomide infusion in human subjects showed a statistically significant reduction in AUC 15 minutes after oral administration of a high fat breakfast as compared to drug infusion in the fasted state, the reduction (−13%) was substantially smaller than the reduction (from −43% to −63%) observed with oral bidisomide meal co-administration. The percentages of bidisomide and disopyramide lost by binding to homogenates of cooked breakfast were 25.0 ± 5.7% and 23.7 ± 7.7%, respectively, as determined by dialysis at 4 hours. In dogs, the extent of absorption of disopyramide was comparable from oral, duodenal and mid-jejunal administration while the extent of bidisomide absorption from mid-jejunal administration was significantly lower than for oral or duodenal administration. Non-viscous liquid meals decreased Cmax but not AUC, while viscous homogenized solid meals decreased both Cmax and AUC for bidisomide with oral drug-meal co-administration. Oral non-caloric hydroxypropyl methylcellulose meals decreased bidisomide to the same extent as homogenized solid meals but did not lower disopyramide AUC. Conclusions. The significant reduction in bidisomide plasma levels observed with meal co-administration in human subjects was predominantly mediated through a reduction in drug absorption and was independent of solid meal composition. The difference in meal effect on the absorption of the two drugs in humans did not appear to be a function of drug binding to cooked meal components over typical human upper gastrointestinal residence times. In dogs, the high-viscosity medium generated by oral co-administration of a solid meal reduced the upper intestinal absorption of bidisomide and disopyramide. Bidisomide AUC was decreased since it was well absorbed in the upper but not lower small intestine. Disopyramide AUC was not significantly affected since it was well absorbed from both regions. A similar mechanism may play a role in drug plasma level reductions following oral co-administration with solid meals for drugs showing similar regionally-dependent absorption profiles.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 0449-2951
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: Pure diacrylylmethane does not polymerize smoothly on free radical initiation. It gives a higher yield of the polymer as a sodium salt when initiated by sodium methoxide. The molecular weight is obviously low. The polymer formed from its sodium salt is insoluble. Attempts to prepare the dioxime yielded an intractable monooxime.
    Additional Material: 1 Tab.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...