Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 24 (1996), S. 379-387 
    ISSN: 0887-3585
    Keywords: infrared spectroscopy ; protein structure ; unfolding ; RNase T1 ; RNase A ; histone-like protein HBsu ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: Fourier-transform infrared (FTIR) spectroscopy has been used to study the thermally induced exchange characteristics of those backbone amide protons which persist H-D exchange at ambient conditions in ribonuclease A, in wild type ribonuclease T1 and some of its variants, and in the histone-like protein HBsu. The H-D exchange processes were induced by increasing the thermal energy of the protein solutions in two ways: (i) by linearly increasing the temperature, and (ii) by a temperature jump. To trace the H-D exchange in the proteins, various infrared absorption bands known to be sensitive to H-D exchange were used as specific monitors. Characteristic H-D exchange curves were obtained from which the endpoints (TH/D) of H-D exchange could be determined. The H-D exchange curves, the TH/D-values and the phase transition temperatures Tm were used to estimate the structural flexibility and stability of the given proteins. It is suggested that time-resolved FTIR spectroscopy can be used to determine global stability parameters of proteins.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...