Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    Journal of Biomedical Materials Research 42 (1998), S. 96-102 
    ISSN: 0021-9304
    Keywords: coral ; calcite ; cell culture ; Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine , Technology
    Notes: The two crystalline forms of CaCO3, aragonite (from natural coral) and calcite (from natural limestone), have been used with success as bone graft substitutes. However, natural coral transformed into calcite by heating has never been tested. The objective of this work was to study the proliferation and alkaline phosphatase, osteonectin, and osteocalcin expression of human bone marrow cells cultured on CaCO3 crystallized both in the aragonite form (natural coral) and in the calcite form (natural coral modified by heating). The methods used to characterize calcite obtained from the coral were volumic porosimetry, scanning electron microscopy (SEM) and X-ray diffraction. Cell colonization of the material was assessed by SEM performed on days 1, 7, 20, and 30 and [3H]thymidine incorporation was performed on days 3, 7, 12, 18, 25, and 32. Phenotypic expression was assessed by using in situ cytochemistry (alkaline phosphatase), immunocytochemistry (osteonectin and osteocalcin), and hybridization (osteocalcin, β-actin, and alkaline phosphatase mRNA). Results showed the transformation of aragonite into calcite after heating, the conservation of macroporosity, and a modification of the surface. Calcite appeared to have a smoother and more uniform surface than aragonite crystals. As for [3H]thymidine there was an increase incorporation from days 3 to 18, a stabilization from days 18 to 25, and a decrease from days 25 to 32. After 20 days of culture, immunological studies using monoclonal antibodies to osteocalcin, osteonectin, cytochemical analysis of alkaline phosphatase activity, and in situ hybridization using osteocalcin, β-actin, and alkaline phosphatase cDNA indicated that the cells had not lost their osteoblastic phenotype. These experiments demonstrate that coral crystallized in the aragonite or calcite form present a similar degree of specific cytocompatibility. © 1998 John Wiley & Sons, Inc. J. Biomed Mater Res, 42, 96-102, 1998.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    Journal of Biomedical Materials Research 27 (1993), S. 1367-1381 
    ISSN: 0021-9304
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine , Technology
    Notes: There is a need for viable small diameter vascular grafts, the luminal surface of which could be seeded by endothelial cells (ECs) to prevent thrombosis. In order to select candidates for EC seeding before implantation, the in vitro cytocompatibility of three different Pellethanes® (polyetherurethanes) using human ECs was investigated. The methodology included two stages depending on either direct contact between cells and materials or contact between cells and material extracts, obtained under standardized conditions. By the latter method, we observed a cytotoxic effect on cell growth with 2363-55 D Pellethane extract at a 50% (v/v) concentration in the nutrient medium, likely provoked by leachables and correlated with the lowest levels of tPA, PAI1, and vWF antigens in the supernatants. By the former method, we studied EC attachment and growth. Morphology was studied by classical means and completed by scintigraphy and microautoradiography after 111Indium-labeling of the EC monolayer. Differentiation was determined by the release of vWF antigen and measurement of vWF activity (multimeric organization) after human thrombin stimulation. Despite an inhibition of proliferation for both 55 D and 75 D types (compared to the control), a functional monolayer of ECs was obtained on 75 D. Pellethane 75 D could be the best support for in vitro endothelialization. © 1993 John Wiley & Sons, Inc.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 0021-9304
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine , Technology
    Notes: Three different exoskeletons of coral species Porites astreoides (P), Montastrea annularis (M), and Dichocoenia stokesi (D) were implanted for 2-20 weeks in rabbits. At 2, 4, 8, or 20 weeks, the exoskeletons presented variations in their resorptions depending on the species. To understand the variations in the decreasing speed of the implants despite their similar chemical composition, a study of the surface and architecture of the coral was carried out using scanning electronic microscopy, porosity was evaluated, and growth and differentiation of osteogenic cells cultured in vitro were observed for more than 1 month. At the cellular level, the surface of the implants was identical. Three-dimensional structures of the implants were variable, but the porosity values [P = 42.7%, M = 40.7%, and D = 17.4%] could not completely account for the differences in the resorbing process of the species. Standard histologic studies performed at 2, 4, 8, and 20 weeks after implantation produced the same pattern with P or M, showing aspects of rapid resorption; however, with D there were images resembling those of a foreign-body reaction. It seems that when resorption is not quick enough, a foreign body reaction develops which further slows down the process. This work focuses on the importance of porosity when using coral as bone substitute. © 1995 John Wiley & Sons, Inc.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 0021-9304
    Keywords: urothelial cell culture ; biocompatibility evaluation ; materials testing ; urinary catheters ; barium ; Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine , Technology
    Notes: For several years, studies performed to estimate in vitro biocompatibility of urinary catheters have been carried out using permanent cell lines. But for a rational design of the testing procedure, the cell culture model should relate to the material application. This work presents the results of a probe study designed to obtain an in vitro model of normal human urothelial cells (HUC) and to test the relevance of this system in cytocompatibility experiments of urinary catheters currently used. A comparison is made with continuous cell lines, the use of which is recommended by normalization bodies. We exposed monolayers of HUC (well characterized for their proliferation, qualitative evaluation, and quantitative measurement of cytokeratins) and two continuous human cell lines to liquid extracts (either pure or diluted in the culture medium) of nine available catheters, including positive (latex) and negative controls, for a 24 h incubation. Then colorimetric assays (Neutral Red and MTT) were performed. The extracts of two polyurethanes provoked a significant toxic effect on HUC only, suggesting differences in sensitivity between the models used. This effect could be due to the presence of a great amount of barium (used as a radioopacifier) in extracts, as highlighted by results of absorption emission spectroscopy. A culture model of HUC may be of relevance for the screening of materials intended for urological practice. © 1998 John Wiley & Sons, Inc. J Biomed Mater Res, 40, 31-39, 1998.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...