Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Stamford, Conn. [u.a.] : Wiley-Blackwell
    Polymer Engineering and Science 33 (1993), S. 75-82 
    ISSN: 0032-3888
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Water sorption in epoxy based materials was analyzed by dielectric spectroscopy using remote sensors. A method to determine diffusion coefficients from the changes in permittivity during water absorption is proposed and was verified experimentally by comparison with standard water gain measurements. Although the technique is limited by electrode polarization phenomena, it is sensitive to the presence of water molecules and is capable of detecting different levels of water concentration as a function of frequency. The utilization of remote sensors demonstrated the capability of dielectric analysis to be applied both in the laboratory environment, and on a larger scale, as a nondestructive technique for monitoring environmental changes in actual polymer matrix composite parts.
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Stamford, Conn. [u.a.] : Wiley-Blackwell
    Polymer Engineering and Science 31 (1991), S. 607-614 
    ISSN: 0032-3888
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: The evolution of crystallinity of neat PPS and of the carbon fiber reinforced polymer under different processing conditions is studied. Crystallization from the amorphous state at low temperatures (cold crystallization), crystallization from the melt during cooling, and crystal melting processes are analyzed using calorimetric techniques under both isothermal and nonisothermal conditions. Cold and melt crystallization kinetics are described using an Avrami equation and an Arrhenius expression for the temperature dependence of the kinetic constant. Also, the melting kinetics of the, reinforced and of the unreinforced polymer are studied in this work. The effect of carbon fibers on the crystallization kinetics of PPS is analyzed, and a comparison of the crystallization behavior of PPS and other semicrystalline thermoplastic matrices, such as poly(etheretherketone) (PEEK), is presented.
    Additional Material: 17 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    Advances in Polymer Technology 10 (1990), S. 251-264 
    ISSN: 0730-6679
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: The thermokinetic and rheological behavior of epoxy based composites during the pultrusion of carbon fiber composites is analyzed using a mathematical model accounting for the heat transfer and the heat generation characteristics of polymerizable systems. An energy balance and a kinetic expression for the chemical reaction are simultaneously solved to calculate the temperature and degree of reaction profiles. Afterwards the viscosity as a function of the degree of reaction is computed applying a theoretical model. The dimensionless mathematical model is applied to the description and optimization of the process variables. General optimization criteria are identified and applied to compute, through a tailored numerical simulation, the optimum set of processing conditions for different case studies corresponding to different die temperatures, pulling speeds, and composite thicknesses.
    Additional Material: 15 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...