Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 0192-8651
    Keywords: empirical force fields ; semiempirical quantum chemical methods ; ab initio SCF with dispersion energy ; H-bonded and stacked DNA base pairs ; Chemistry ; Theoretical, Physical and Computational Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: Empirical energy functions (AMBER 4.1, CFF95, CHARMM23, OPLS, Poltev), semiempirical quantum chemical methods (AM1, MNDO/M, PM3), and the nonempirical ab initio self-consistent field (SCF) method utilizing a minimal basis set combined with the London dispersion energy (SCFD method) were used for calculation of stabilization energies of 26 H-bonded DNA base pairs, 10 stacked DNA base pairs (thymine was replaced by uracil), and the B-DNA decamer (only DNA bases were considered). These energies were compared with nonempirical ab initio beyond Hartree-Fock values [second-order Møller-Plesset (MP2)/6-31G*(0.25)]. The best performance was exhibited by AMBER 4.1 with the force field of Cornell et al. The SCFD method, tested for H-bonded pairs only, exhibited stabilization energies that were too large. Semiempirical quantum chemical methods gave poor agreement with MP2 values in the H-bonded systems and failed completely for stacked pairs. A similar failure was recently reported for density functional theory calculations on base stacking. It may be concluded that currently available force fields provide much better descriptions of interactions of nucleic acid bases than the semiempirical methods and low-level ab initio treatment. © 1997 John Wiley & Sons, Inc.   J Comput Chem 18: 1136-1150
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...