Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 33 (1995), S. 1123-1133 
    ISSN: 0887-6266
    Keywords: latex film formation ; surfactant diffusion ; water-borne coatings ; Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: We report atomic force microscopy images of surfactant (SDS) exudation in PBMA latex films, in the presence and the absence of a coalescing aid (Texanol™, TPM). The exudates appear as hilly islets, and at times as mountains, at the film surface. Their size and number increase upon annealing above the glass-transition temperature of the latex polymer. TPM was found to be a strong promoter of surfactant exudation at the air-polymer interface. In the absence of TPM, annealing the films for several hours at 70°C led to very little migration of surfactant to the surface at most sites in the film. When the films with structures of SDS on their surface were immersed in water, these structures disappeared. Pores, ranging in size from tens to hundreds of nm in diameter, were clearly visible in the surface of the films. These films dry from the edges of the film inward, with a propagation front concentrating the water-soluble species into a turbid, moist region in the center. At this site, the rate at which the surfactant comes to the surface is enormously enhanced over that at other sites in the film. This is likely due to the high concentration of surfactant in this region, transported there by the drying process. © 1995 John Wiley & Sons, Inc.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Basel : Wiley-Blackwell
    Die Makromolekulare Chemie, Rapid Communications 14 (1993), S. 345-349 
    ISSN: 0173-2803
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...