Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1573-0603
    Keywords: Chemoprevention ; In vitro assays ; Drug screening
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract This issue reports the methods of twelve in vitro assays currently being used to screen potential chemopreventive agents for activity. These assays provide quantitative data to help determine the efficacy and prioritize agents for further development in whole animal screening. It is essential that such in vitro assays provide accurate, consistent, and relevant data to identify and prioritize agents with the most promise to prevent human cancer. The twelve assays presented in this volume are currently providing such data to the National Cancer Institute's Chemoprevention Program.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 56 (1994), S. 1-24 
    ISSN: 0730-2312
    Keywords: Chemoprevention ; drug development ; mechanism of action ; cancer ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: This overview of the potential mechanisms of chemopreventive activity will provide the conceptual groundwork for chemopreventive drug discovery, leading to structure-activity and mechanistic studies that identify and evaluate new agents. Possible mechanisms of chemopreventive activity with examples of promising agents include carcinogen blocking activities such as inhibition of carcinogen uptake (calcium), inhibition of formation or activation of carcinogen (arylalkyl isothiocyanates, DHEA, NSAIDs, polyphenols), deactivation or detoxification of carcinogen (oltipraz, other GSH-enhancing agents), preventing carcinogen binding to DNA (oltipraz, polyphenols), and enhancing the level or fidelity of DNA repair (NAC, protease inhibitors). Chemopreventive antioxidant activities include scavenging reactive electrophiles (GSH-enhancing agents), scavenging oxygen radicals (polyphenols, vitamin E), and inhibiting arachidonic acid metabolism (glycyrrhetinic acid, NAC, NSAIDs, polyphenols, tamoxifen). Antiproliferation/antiprogression activities include modulation of signal transduction (glycyrrhetinic acid, NSAIDs, polyphenols, retinoids, tamoxifen), modulation of hormonal and growth factor activity (NSAIDs, retinoids, tamoxifen), inhibition of aberrant oncogene activity (genistein, NSAIDs, monoterpenes), inhibition of polyamine metabolism (DFMO, retinoids, tamoxifen), induction of terminal differentiation (calcium, retinoids, vitamin D3), restoration of immune response (NSAIDs, selenium, vitamin E), enhancing intercellular communication (carotenoids, retinoids), restoration of tumor suppressor function, induction of programmed cell death (apoptosis) (butyric acid, genistein, retinoids, tamoxifen), correction of DNA methylation imbalances (folic acid), inhibition of angiogenesis (genistein, retionoids, tamoxifen), inhibition of basement membrane degradation (protease inhibitors), and activation of antimetastasis genes.A systematic drug development program for chemopreventive agents is only possible with continuing research into mechanisms of action and thoughtful application of the mechanisms to new drug design and discovery. One approach is to construct pharmacological activity profiles for promising agents. These profiles are compared among the promising agents and with untested compounds to identify similarities. Classical structure-activity studies are used to find optimal agents (high efficacy with low toxicity) based on good lead agents. Studies evaluating tissue-specific and pharmacokinetic parameters are very important. A final approach is design of mechanism-based assays and identification of mechanism-based intermediate biomarkers for evaluation of chemopreventive efficacy. 1994 Wiley-Liss, Inc.This article is a US Government work and, as such, is in the public domain in the United States of America.
    Additional Material: 1 Tab.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...