Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-0983
    Keywords: Chlamydomonas ; Ultraviolet sensitive mutants ; Uniparental inheritance ; Chloroplast DNA
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Meiotic progeny of Chlamydomonas reinhardtii normally receive chloroplast genomes only from the mt + parent. However, exceptional zygotes, which transmit the chloroplast genomes of both parents or, more rarely, only those of the mt - parent, arise at a low frequency. Mutations at the mt +-linked mat-3 locus were found previously to elevate the transmission of chloroplast genomes from the mt-parent, resulting in a much higher than normal frequency of exceptional zygotes. In this paper we demonstrate that an ultraviolet-sensitive nuclear mutation mapping at the uvsE1 locus, which is unlinked to mating type, also promotes chloroplast genome transmission from the mt - parent. This mutant, which was previously shown to reduce recombination of nuclear genes in meiosis, acts synergistically which the mat3-3 mutation to produce an extremely high frequency of exceptional zygotes. Through the use of restriction fragment length polymorphisms existing in the chloroplast genomes of C. reinhardtii and the interfertile strain C. smithii, we show that chloroplast DNA fragments from the mt - parent normally begin to disappear shortly after zygote formation. However, this process appears to be blocked totally in the absence of wild-type uvsE1 and mat-3 gene products. Our findings are consistent with the hypothesis that both gene products contribute to the mechanism responsible for uniparental inheritance of the chloroplast genome from the mt + parent.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1617-4623
    Keywords: Chloroplast gene disruption ; Chloroplast transformation ; Chlamydomonas ; atpB ; rbcL
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary We have developed an efficient procedure for the disruption of Chlamydomonas chloroplast genes. Wild-type C. reinhardtii cells were bombarded with microprojectiles coated with a mixture of two plasmids, one encoding selectable, antibiotic-resistance mutations in the 16S ribosomal RNA gene and the other containing either the atpB or rbcL photosynthetic gene inactivated by an insertion of 0.48 kb of yeast DNA in the coding sequence. Antibiotic-resistant transformants were selected under conditions permissive for growth of nonphotosynthetic mutants. Approximately half of these transformants were initially heteroplasmic for copies of the disrupted atpB or rbcL genes integrated into the recipient chloroplast genome but still retained photosynthetic competence. A small fraction of the transformants (1.1% for atpB; 4.3% for rbcL) were nonphotosynthetic and homoplasmic for the disrupted gene at the time they were isolated. Single cell cloning of the initially heteroplasmic transformants also yielded nonphotosynthetic segregants that were homoplasmic for the disrupted gene. Polypeptide products of the disrupted atpB and rbcL genes could not be detected using immunoblotting techniques. We believe that any nonessential Chlamydomonas chloroplast gene, such as those involved in photosynthesis, should be amenable to gene disruption by cotransformation. The method should prove useful for the introduction of site-specific mutations into chloroplast genes and flanking regulatory sequences with a view to elucidating their function.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...