Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-2048
    Keywords: Chlorella ; Nitrate reductase (plasma-membrane bound) ; Plasma membrane
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The plasma membranes of Chlorella saccharophila (Krüger) Nadson cells contained a membrane-bound nitrate reductase. This form of nitrate reductase was purified and characterized. Several differences from the soluble form of nitrate reductase were apparent, the most important being: (i) the greater hydrophobicity, as proven using Triton X-114 phase separation, hydrophobic interaction chromatography and stimulation by phosphilipids; (ii) the differences in the native molecular mass compared with Chlorella sorokiniana (Krüger) Nadson; and (iii) the different polypeptide pattern obtained by two-dimensional polyacrylamide gel electrophoresis. Only the plasma-membrane-bound nitrate reductase could be found in both inside-out and right-side-out plasma-membrane vesicles.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-2048
    Keywords: Blue-light ; Chlorella ; Nitrate reductase (plasma-membrane-bound) ; Nitrate uptake
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Nitrate uptake in Chlorella saccharophila (Krüger) Nadson was found to be stimulated by blue light, leading to a doubling of the rate. In the presence of background red light (300 μmol photons · m-2 · s-1), only 15–20 μmol photons · m-2 · s-1 of blue light was sufficient to saturate this increased uptake rate. Incubation of Chlorella cells with anti-nitrate-reductase immunoglobulin-G fragments inhibited blue-light stimulation. However, ferricyanide (10 μM) doubled and dithiothreitol (100 μM) inhibited the stimulatory effect of blue light. Among the protein-kinase inhibitors used, only staurosporine (10 μM) prevented the blue-light stimulation. Phosphatase inhibitors were without effect and sodium vanadate totally inhibited nitrate uptake, pointing to an involvement of the plasma-membrane ATPase. Preincubation of the cells with calmodulin antagonists or calcium ionophores did not significantly reduce blue-light stimulation of nitrate uptake. The data are discussed with regard to transduction of the signal for blue-light stimulation of nitrate uptake and the possibility that the plasma-membrane-bound nitrate reductase is the blue-light receptor.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-2048
    Keywords: Chlorella ; Glycosyl-phosphatidylinositol anchor ; Nitrate reductase ; Plasma membrane
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Experiments with plasma-membrane vesicles were performed in order to identify the attachment of hydrophobic nitrate reductase at the plasma membrane of Chlorella saccharophila. The enzyme was successfully removed from the plasma membrane with phosphoinositol-specific phospholipase C, and showed cross-reactivity with a monoclonal antibody (clone aGPI-3) raised against the glycosyl-phosphatidylinositol (GPI) anchor of Trypanosoma variant surface protein. The enzyme was labelled in vivo by feeding [3H]ethanolamine to the cells and underwent an hydrophobicity shift after treatment with phosphoinositol-specific phospholipase C. The attachment of this form of nitrate reductase to the plasma membrane via a GPI anchor was demonstrated.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...